## **Contents**

| Introduction                                                                                   | 5  |
|------------------------------------------------------------------------------------------------|----|
| Chapter 1.                                                                                     |    |
| Physical concepts of Mössbauer spectroscopy                                                    | 11 |
| 1.1. Recoilless nuclear resonance emission and absorption                                      | 11 |
| 1.2. Temperature shift of the Mössbauer spectrum                                               | 19 |
| 1.3. Isomeric Shift of the Mössbauer spectrum                                                  | 19 |
| 1.4. Quadrupole splitting                                                                      | 21 |
| 1.5. Emission Mössbauer spectroscopy of the after-effects of nuclear transformations in solids | 25 |
| 1.6. One-electron exchange between neutral and ionized acceptor                                | -1 |
| iron centers in GaAs and GaP                                                                   | 27 |
| 1.7. Observation of charge exchange by copper impurity atoms in AgCl                           | 38 |
| 1.8. Tin chalcogenides                                                                         | 41 |
| 1.9. Compounds of tin with elements of the fifth group                                         | 45 |
| 1.10. Tin impurity atoms in silicon, germanium, and silicon-                                   |    |
| germanium solid                                                                                | 53 |
| Chapter 2.                                                                                     |    |
| Identification of neutral and ionized tin donor states in PbS and                              |    |
| PbSe                                                                                           | 64 |
| 2.1. Charge exchange of tin atoms in $Pb_{1-x}Sn_xS$ solid solutions                           | 64 |
| 2.2. Charge exchange of tin atoms in $Pb_{1-x}Sn_xSe$ solid solutions                          | 67 |
| 2.3. Local symmetry and electronic structure of atoms in the                                   |    |
| $Pb_{1-x-y}Sn_xNa_ySe$ lattices in the gapless state                                           | 70 |
| 2.4. Two-electron tin centers with negative correlation energy in                              |    |
| lead chalcogenides. Determination of the Hubbard energy                                        | 78 |
| 2.5. Hubbard energy of two-electron tin centers in PbS <sub>1-z</sub> Te <sub>z</sub> solid    |    |
| solutions                                                                                      | 89 |

| 2.6. Local symmetry and electronic structure of tin atoms in                    |     |
|---------------------------------------------------------------------------------|-----|
| $(Pb_{1-x}Sn_x)_{1-z}In_zTe$ lattices                                           | 92  |
| 2.7. Statistics of electrons in PbS with U centers                              | 96  |
| 2.8. Energy parameters of two-electron tin centers in PbSe                      | 104 |
| 2.9. Detection of singly ionized state of two-electron tin centers              |     |
| with negative correlation energy in $Pb_{1-x}Sn_xS$ alloys                      | 112 |
| 2.10. Two-electron centers with negative correlation energy                     |     |
| $Pb_{1-x}Sn_xSe$ solid solutions                                                | 117 |
| Chapter 3.                                                                      |     |
| Two-electron tin centers formed in lead chalcogenides as a                      |     |
| result of nuclear transmutations                                                | 123 |
| 3.1. Position of antimony impurity atoms in a PbTe lattice,                     |     |
| determined by emission Mössbauer spectroscopy                                   | 123 |
| 3.2. Antistructural defects in PbTe-type semiconductors                         | 127 |
| 3.3. Determining the position of antimony impurity atoms in PbS by              |     |
| <sup>119</sup> Sb( <sup>119m</sup> Sn) emission Mössbauer spectroscopy          | 131 |
| 3.4. Two-electron tin centers formed in lead chalcogenides as a                 |     |
| result of nuclear transmutations                                                | 135 |
| 3.5. States of antimony and tin atoms in lead chalcogenides                     | 148 |
| 3.6. Two-electron tin centers with a negative correlation energy in PbS         | 156 |
| Chapter 4.                                                                      |     |
| Identification of tin states in chalcogenige glasses                            | 172 |
| 4.1. The influence of the crystal- glass transition on the state of             |     |
| impurity tin atoms in chalcogenide semiconductors                               | 172 |
| 4.2. Tin impurity atom states in modified As <sub>2</sub> Se <sub>3</sub> films | 181 |
| 4.3. Properties and structure of $(As_2Se_3)_{1-z}(SnSe)_{z-x}(GeSe)_x$ and     | l e |
| $(As_2Se_3)_{1-z}(SnSe_2)_{z-x}(GeSe_2)_x$ glasses                              | 186 |
| 4.4. Local structure of $Ge-S$ , $Ge-Se$ , and $Ge-Te$ vitreous alloys          | 197 |
|                                                                                 |     |

| 4.5. Structure and physicochemical properties of glasses in the                                                                                        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $(As_2Se_3)_{1-z}(SnSe_2)_{z-x}(Tl_2Se)_x u (As_2Se_3)_{1-z}(SnSe)_{z-x}(Tl_2Se)_x systems$                                                            | 202 |
| Chapter 5.                                                                                                                                             |     |
| Two-electron tin centers formed in chalcogenide glasses as a                                                                                           |     |
| result of nuclear transmutations                                                                                                                       | 214 |
| 5.1. Two-electron tin centers formed in glasses As <sub>2</sub> S <sub>3</sub> , As <sub>2</sub> Se <sub>3</sub> , and As <sub>2</sub> Te <sub>3</sub> |     |
| as a result of nuclear transformations                                                                                                                 | 214 |
| 5.2. Impurity centers of tin in glassy arsenic chalcogenides                                                                                           | 224 |
| 5.3. The state of tin impurity atoms in vitreous germanium chalcogenides                                                                               | 233 |
| Chapter 6.                                                                                                                                             |     |
| Electron exchenge between impurity centers of tin in lead                                                                                              |     |
| chalcogenides and chalcogenide glasses                                                                                                                 | 247 |
| 6.1. Identification of neutral and ionized tin donor states and the                                                                                    |     |
| observation of two-electron exchange between tin centers in solid                                                                                      |     |
| solutions based on PbS and PbSe                                                                                                                        | 247 |
| 6.2. Mechanism of two-electron exchange between neutral and ion-                                                                                       |     |
| ized centres of tin in $PbS_{1-x}Se_x$ solid solutions                                                                                                 | 257 |
| 6.3. Investigation of two-electron exchange between neutral and ionized                                                                                |     |
| impurity centers                                                                                                                                       | 266 |
| 6.4. Unconventional tin atom states in mixed silver and tin                                                                                            |     |
| chalcogenides having NaCl structure                                                                                                                    | 274 |
| 6.5. Temperature dependence of the frequency of two-electron exchange                                                                                  |     |
| between impurity negative-U tin centers in lead sulfide                                                                                                | 279 |
| 6.6. Electron exchange between impurity centers of tin in lead                                                                                         |     |
| chalcogenides                                                                                                                                          | 283 |
| 6.7. Electron exchange between tin impurity $U^-$ centers in                                                                                           |     |
| $PbS_zSe_{1-z}$ alloys                                                                                                                                 | 294 |
| 6.8. The two-electron exchange between the U - tin centers in crystal and                                                                              |     |
| Glass-like chalcogenide semiconductors                                                                                                                 | 307 |

| Chapter 7.                                                                                     |     |
|------------------------------------------------------------------------------------------------|-----|
| The electrical activity of germanium impurities in lead chalcogenides                          | 312 |
| 7.1. The electrical activity of isoelectronic germanium impurities in lead                     |     |
| chalcogenides                                                                                  | 312 |
| 7.2. Arrangement of arsenic atoms in the PbTe lattice                                          | 317 |
| 7.3. Observation of Bose condensation in $(Pb_{0.4}Sn_{0.6})_{0.86}In_{0.14}Te$                |     |
| semiconductor solid solutions using Mössbauer spectroscopy                                     | 321 |
| 7.4. Two-electron germanium centers with a negative correlation                                |     |
| energy in lead chalcogenides                                                                   | 327 |
| 7.5. Mössbauer U- centers as tools for studying the Bose                                       |     |
| condensation in semiconductors                                                                 | 339 |
| Conclusions                                                                                    | 351 |
| Appendix                                                                                       |     |
| Determination of the composition of chalcogenide semiconductors X-                             |     |
| Ray Fluorescence Analysis                                                                      | 352 |
| A.1. Determination of the composition of binary chalcogenide glasses by                        |     |
| X-Ray fluorescence analysis                                                                    | 352 |
| A.2. Determination of the composition of multicomponent chalcogenide                           |     |
| semiconductors by x-ray fluorescence analysis                                                  | 360 |
| A.3. X-ray fluorescence analysis of $Ge_{1-x}Se_x$ , $As_{1-x}Se_x$ , and $Ge_{1-x-y}As_ySe_x$ |     |
| glasses using electronic excitation                                                            | 372 |
| References                                                                                     | 383 |