ФИЗИКА

Г. А. Бордовский, А. В. Марченко, А. Ю. Дашина, П. П. Серегин

ПРИМЕСНЫЕ ЦЕНТРЫ, ОБРАЗУЮЩИЕСЯ В РЕЗУЛЬТАТЕ ЯДЕРНЫХ ПРЕВРАЩЕНИЙ В СТЕКЛООБРАЗНЫХ ХАЛЬКОГЕНИДАХ МЫШЬЯКА

Примесные атомы ¹²⁹I, образующиеся после радиоактивного распада атомов ¹²⁹Te в стеклах As_xS_{1-x} и As_xSe_{1-x} , электрически неактивны и находятся в узлах халькогенов, образующих структурные единицы в виде цепочек типа (-As-S-As-) и (-As-S-S-As-). Примесные атомы ^{119m}Sn, образующиеся после радиоактивного распада атомов ¹¹⁹Sb в структуре стекол As_xS_{1-x} и As_xSe_{1-x} , локализуются в узлах мышьяка и играют роль двухэлектронных центров с отрицательной корреляционной энергией. Большая часть дочерних атомов ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te в стеклах As_xS_{1-x} и As_xSe_{1-x} , находится в узлах халькогенов, и они электрически неактивны.

Ключевые слова: примесные центры, стеклообразные халькогениды мышьяка.

G. Bordovsky, A. Marchenko, A. Dashina, P. Seregin

IMPURITY CENTRES PRODUCED AS A RESULT OF NUCLEAR TRANSFORMATION IN ARSENIC CHALCOGENIDE GLASSES

Impurity ¹²⁹I atoms resulting from radioactive decay of ¹²⁹Te atoms in As_xS_{1-x} and As_xSe_{1-x} glasses are electrically inactive and reside in chalcogen sites, forming structural units -As-S-Asand -As-S-S-As- chains. Impurity ^{119m}Sn atoms resulting from radioactive decay of ¹¹⁹Sb atoms in As_xS_{1-x} and As_xSe_{1-x} glasses reside in arsenic sites and act as two-electron centers with negative correlation energy. Most daughter ^{119m}Sn atoms produced by radioactive decay of parent ^{119m}Te atoms in As-S and As-Se glasses are electrically inactive and reside in chalcogen sites.

Keywords: impurity centres, arsenic chalcogenide glasses.

Мессбауэровская спектроскопия широко применяется для исследования состояния примесных атомов в полупроводниках [1]. В частности, использование эмиссионного варианта спектроскопии позволяет стабилизировать примесные атомы, образующиеся после распада радиоактивных материнских изотопов, в необычных положениях кристаллической решетки или структурной сетки стекла.

В настоящей работе для исследования состояния примесных атомов олова и йода в стеклообразных халькогенидах мышьяка используется эмиссионный вариант мессбауэровской спектроскопии на изотопах ¹¹⁹Sn и ¹²⁹I, когда в исследуемое стекло вводится радиоактивный материнский изотоп (¹¹⁹Sb, ^{119m}Te или ¹²⁹Te), после распада которого образуется дочерний мессбауэровский атом. Схемы распада материнских атомов ¹¹⁹Sb, ^{119m}Te и ¹²⁹Te приведены на рис. 1 и видно, что в зависимости от химической природы материнского изотопа возможно введение дочернего атома либо в структурную сетку, образованную атомами мышьяка (материнские атомы ¹¹⁹Sb), либо в структурную сетку, образованную атомами халькогена (материнские атомы ^{119m}Te и ¹²⁹Te).

Рис. 1. Схемы распада ¹¹⁹Sb, ^{119m}Te и ¹²⁹Te

Объектами исследований служили стеклообразные сплавы систем As_xS_{1-x} (As_{0.45}S_{0.55}, As_{0.4}S_{0.6}, As_{0.286}S_{0.714}, As_{0.2}S_{0.8}) и As_xSe_{1-x} (As_{0.6}Se_{0.4}, As_{0.5}Se_{0.5}, As_{0.4}Se_{0.6}, As_{0.286}Se_{0.714}, As_{0.2}Se_{0.8}) (приведены номинальные составы по составу исходной шихты, определенной с погрешностью ± 0,001, что соответствует точности взвешивания 5 мг для отдельных компонент при общей массе образца ~5 г). Все стекла синтезировались в вакуумированных кварцевых ампулах при 700°С. Синтез сплавов, содержащих серу, проводили в две стадии. Первоначально ампулы в печи нагревали со скоростью 3°С в минуту до температуры 450 °С (при этом протекают процессы плавления серы и взаимодействия ее с мышьяком с образованием As₂S₃). При 450 °C ампулы выдерживали в течение 5 ч. На второй стадии скорость нагрева ампул до максимальной температуры составляла 4 °С в минуту и расплавы выдерживали при этой температуре в течение 6 ч. При синтезе сплавов, содержащих селен, температуру в печи поднимали до максимальной со скоростью 4 °С в минуту и расплавы выдерживали при этой температуре в течение 6 ч. Закалка расплава проводилась на воздухе. Стеклообразные корольки массой ~5 граммов представляли собой монолитные слитки, верх ампулы не содержал следов возгонки. Критериями стеклообразного состояния служили раковистый излом, отсутствие линий на дебаеграммах, отсутствие включений и неоднородностей при просмотре полированных поверхностей в металлмикроскопе МИМ-7 и инфракрасном микроскопе МИК-1.

Мессбауэровские источники готовили путем сплавления готовых стеклообразных образцов с безносительными препаратами ¹¹⁹Sb, ^{119m}Te и ¹²⁹Te, так что оценочная концентрация атомов сурьмы и теллура в образцах не превышала 10^{17} см⁻³.

Количественный состав стекол As_xS_{1-x} и As_xSe_{1-x} контролировался методом рентгенофлуоресцентного анализа. С этой целью измерялись рентгенофлуоресцентные спектры стекол и для них определялись площади под $K_{\alpha 1,2}$ -линиями мышьяка S_{As} , серы S_S и селена S_{Se} и по соотношениям

$$x_{P\Phi A} = \frac{S_{As}}{S_{As} + S_{S}}, \quad x_{P\Phi A} = \frac{S_{As}}{S_{As} + S_{Se}}$$
(1)

определялись атомные доли мышьяка $x_{P\Phi A}$ (здесь индекс « $P\Phi A$ » означает, что значения x определены из данных рентгенофлуоресцентного анализа с погрешностью ±0,0002). Затем строились зависимости $x_{P\Phi A} = f(x)$ и на рис. 2 приведены указанные зависимости для стекол As_xS_{1-x} и As_xSe_{1-x} (измерения проводились при анодном напряжении 12,2 и 30 кВ соответственно). На эти зависимости кроме данных для стекол $As_{0.45}S_{0.55}$, $As_{0.4}S_{0.6}$, $As_{0.286}S_{0.714}$, $As_{0.2}S_{0.8}$ и $As_{0.6}Se_{0.4}$, $As_{0.5}Se_{0.5}$, $As_{0.4}Se_{0.6}$, $As_{0.286}S_{0.714}$ дополнительно нанесены экспериментальные значения $x_{P\Phi A}$ для стекол $As_{0.15}S_{0.95}$, $As_{0.25}S_{0.85}$, $As_{0.28}S_{0.72}$, $As_{.37}S_{0.63}$, $As_{0.38}S_{0.62}$, $As_{0.39}S_{0.41}$ и $As_{0.02}Se_{0.98}$, $As_{0.1}Se_{0.9}$, $As_{0.15}S_{0.85}$, $As_{0.22}S_{0.78}$, $As_{0.28}S_{0.72}$, $As_{.37}S_{0.63}$, $As_{0.38}S_{0.62}$, $As_{0.39}S_{0.41}$ и $As_{0.02}Se_{0.98}$, $As_{0.1}Se_{0.9}$, $As_{0.417}Se_{0.583}$. Видно, что для всех образцов зависимость между величинами x и $x_{P\Phi A}$ хорошо описывается полиномом второй степени, а некоторый разброс данных (особенно для стекол As_xS_{1-x}) объясняется большей погрешностью в определении x по составу исходной шихты (не лучше, чем ±0,001) по сравнению с погрешностью в определении $x_{P\Phi A}$ (не хуже, чем ±0,0002).

Рис. 2. Зависимости $x_{P\phi A} = f(x)$ для стекол As_xS_{1-x} и As_xSe_{1-x}. Точками показаны значения x и $x_{P\phi A}$, использованные для построения зависимостей $x_{P\phi A} = -1,0112x^2 + 2,0064x$ (стекла As_xS_{1-x}, критерий согласия R² =0,9798) и $x_{P\phi A} = -0,0585x^2 + 1,0563x$ (стекла As_xSe_{1-x}, критерий согласия R² = 0,9995) (эти зависимости проведены сплошными линиями). Квадратными символами показаны значения x и $x_{P\phi A}$ для сплавов As_{0.45}S_{0.55}, As_{0.4}S_{0.6}, As_{0.286}Se_{0.714}, As_{0.5}Se_{0.5}, As_{0.4}Se_{0.6}, As_{0.286}Se_{0.714}

Эмиссионные мессбауэровские спектры ¹¹⁹Sn снимались при 80 К. В качестве стандартного поглотителя использовался CaSnO₃ с поверхностной плотностью 0,1 мг/см² по изотопу ¹¹⁹Sn. Исследуемые образцы халькогенидов мышьяка, легированные с материнскими атомами ¹¹⁹Sb и ^{119m}Te, служили источниками. Изомерные сдвиги приводятся относительно поглотителя SnO₂.

Эмиссионные мессбауэровские спектры ¹²⁹I снимались при 80 К. Поглотителем служил К¹²⁹I с поверхностной плотностью 15 mg/cm² по ¹²⁹I. Изомерные сдвиги приводятся относительно спектра KI.

Материнские атомы ¹²⁹Те

Спектры ¹²⁹Те стекол As_xS_{1-х} в общем случае представляют собой наложение двух квадрупольных мультиплетов, параметры которых (изомерный сдвиг, постоянная квадру-

AsS 1.22 AsSeo.60 AsSe Относительная скорость счета ASSIS Ommor AsS2.5 AsSe1.5 AsS 10 20 -20 -10 0 -20 -10 0 10 20 Скорость, мм/с CK

польного взаимодействия, ширина спектральной линии) практически не зависят от состава стекла (см. рис. 3 и табл. 1). Аналогичная ситуация наблюдается и для стекол As_xSe_{1-x}.

Рис. 3. Эмиссионные мессбауэровские спектры ¹²⁹Те стекол As_xS_{1-x} и As_xSe_{1-x} . Показано разложение экспериментальных спектров на два квадрупольных мультиплета, отвечающих атомам ¹²⁹I в цепочках (-As-S-As-) и (-As-Se-As-) (толстая линия) и в цепочках (-As-S-S-As-) и (-As-Se-Se-As-) (тонкая линия)

Таблица 1

Параметры эмиссионных мессбауэровских спектров ¹²⁹Те при 80 К

Стекло		IS,	С,	<i>G</i> ,	<i>S</i> ,	IS,	С,	<i>G</i> ,	<i>S</i> ,	
		мм/с	MM/C	мм/с	отн. ед.	мм/с	мм/с	мм/с	отн. ед	
	x		Цепочки (-As-X-As-)			Цепочки (-As-X-X-As-)				
$As_x S_{l-x}$	0,45	-1,16	-45,5	1,75	0,45	-1,29	-64,5	1,79	0,55	
	0,40	-1,18	-45,8	1,77	0,33	-1,33	-65,1	1,83	0,67	
	0,286	-1,19	-45,5	1,79	0,10	-1,31	-64,8	1,80	0,90	
	0,20	-1,17	-45,5	1,78	0,0	-1,30	-64,8	1,81	1,0	
As_xSe_{1-x}	0,60	-1,19	-40,7	1,79	0,40	-1,28	-59,2	1,79	0,60	
	0,50	-1,18	-40,6	1,76	0,45	-1,31	-59,1	1,83	0,55	
	0,40	-1,19	-40,7	1,75	0,30	-1,28	-59,2	1,79	0,70	
	0,286	-1,16	-41,1	1,78	0,08	-1,27	-58,6	1,81	0,92	
	0,20	-1,17	-41,1	1,79	0,0	-1,29	-58,9	1,77	1,0	
Погрешности		± 0.02	± 0.5	± 0.03	±0,04	± 0.02	± 0.5	± 0.03	±0,04	

 $\varPi pume<unu$ параметр асимметрии тензора градиента электрического поля для всех спектров был $\leq 0,2$

Изомерный сдвиг мультиплета с меньшим (по модулю) значением постоянной квадрупольного взаимодействия близок к изомерному сдвигу мессбауэровского спектра ¹²⁹I соединения AsI₃ [3], что указывает на то, что этот мультиплет отвечает атомам ¹²⁹I, образующим химические связи с атомами мышьяка в своем ближайшем окружении . Поскольку для этого спектра наблюдается отрицательная величина С, то он относится к атомам ¹²⁹I, замещающим атомы двухкоординированного халькогена в цепочках (-As-S-As-) и (-As-Se-As-). Спектр с большим (по модулю) значением С следует отнести к атомам ¹²⁹I, замещающих атомы двухкоординированного халькогена в цепочках (-As-S-As-) и (-As-Se-As-) [3].

Следовательно, в структурной сетке стекол атомы халькогена находятся в двух структурно неэквивалентных позициях, причем площади под нормированными мессбауэровскими спектрами, отвечающими этим позициям, зависят от состава стекла: с увеличением содержания в стекле халькогена площадь под спектром, отвечающим цепочкам (-As-S-S-As-) и (-As-Se-Se-As), возрастает. Иными словами, с увеличением содержания халькогена доля атомов халькогена X в цепочках типа (-As-X-X-As-) возрастает. Это согласуется с традиционными представлениями о строении стекол As-S и As-Se [4].

3.2. Материнские атомы ¹¹⁹Sb

Мессбауэровские спектры As_xS_{1-x} :¹¹⁹Sb и As_xSe_{1-x} :¹¹⁹Sb представляют собой наложение одиночной уширенной линии, изомерный сдвиг которой типичен для шестикоординированных соединений четырехвалентного олова (Sn_6^{4+}) , и плохо разрешенного квадрупольного дублета, изомерный сдвиг которого типичен для трехкоординированных соединений двухвалентного олова (Sn_3^{2+}) (см. рис. 4 и табл. 2). Доля центров Sn_6^{4+} увеличивается с увеличением содержания в стекле атомов халькогена и это коррелирует с отмеченным выше ростом концентрации структурных единиц (-As-X-X-As-) с увеличением содержания в стекле атомов халькогена.

Таблица 2

Стекло		IS,	QS,	G,	<i>S</i> ,	IS,	<i>G</i> ,	<i>S</i> ,	
	x	мм/с	мм/с	мм/с	отн. ед.	мм/с	мм/с	отн. ед.	
		<u>Центры</u> Sn ²⁺				Центры Sn ⁴⁺			
As_xS_{l-x}	0,45	3,94	0,77	0,99	0,32	1,48	1,19	0.68	
	0,40	3,92	0,75	0,97	0,26	1,44	1,17	0.74	
	0,286	3,94	0,74	0,95	0,18	1,43	1,18	0.82	
	0,20	3,92	0,75	0,97	0,12	1,46	1,16	0.88	
$As_x Se_{1-x}$	0,60	3,85	0,58	0,92	0,45	1,75	1,16	0.55	
	0,50	3,83	0,53	0,94	0,39	1,73	1,14	0.61	
	0,40	3,81	0,55	0,96	0,28	1,75	1,18	0.72	
	0,286	3,82	052	0,97	0,14	1,74	1,15	0.86	
Погрешности		±0,02	±0,03	±0,03	±0,03	±0,02	±0,03	±0,02	

Параметры эмиссионных мессбауэровских спектров ¹¹⁹Sb при 80 К

При интерпретации мессбауэровских спектров As_xS_{1-x} .¹¹⁹Sb и As_xSe_{1-x} .¹¹⁹Sb мы исходили из предположения изовалентного замещения атомами трехвалентной сурьмы атомов трехвалентного мышьяка в структурной сетке стекла. Методом ядерного квадрупольного резонанса на изотопе ⁷⁵As в структуре стеклообразных соединений As_2S_3 и As_2Se_3 наблюдается одна широкая линия [2; 5]. Таким образом, и в мессбауэровских спектрах As_2S_3 :¹¹⁹Sb и As_2Se_3 :¹¹⁹Sb следовало ожидать появление одного состояния атомов ^{119m}Sn. Однако в действительности в этих спектрах наблюдаются два состояния атомов олова.

Для объяснения этого факта следует иметь в виду, что электронный распад ¹¹⁹Sb сопровождается оже-процессом и появлением высокозаряженных дочерних атомов ^{119m}Sn. Эти атомы за время, много меньшее $\tau_0 \approx 18$ нс, переходят в зарядовое состояние, отвечающее зарядовому состоянию материнских атомов ¹¹⁹Sn³⁺ и поскольку трехвалентное состояние не характерно для соединений олова, то протекает процесс диспропорционирования

$$2\mathrm{Sn}^{3+} \to \mathrm{Sn}^{2+} + \mathrm{Sn}^{4+},$$
 (2)

который проявляется в мессбауэровских спектрах As_xS_{1-x} :¹¹⁹Sb и As_xSe_{1-x} :¹¹⁹Sb в виде линий, отвечающих состояниям Sn_3^{2+} и Sn_6^{4+} .

Уравнение (2) описывает поведение двухэлектронных центров с отрицательной корреляционной энергией (U⁻-центров). Идеология U⁻-центров широко используется для объяснения электрических, термических и магнитных свойств аморфных материалов [4]. В частности, считается, что нейтральным состоянием U⁻-центра в халькогенидных стеклообразных полупроводниках является X_3° дефект, а заряженными состояниями — X_3^+ и $X_1^$ дефекты (здесь Х — атом халькогена, нижний индекс обозначает координационное число, а верхний — заряд). Существенной особенностью U⁻ центров является неустойчивость их промежуточного (однократно ионизованного) зарядового состояния. Каждой паре нейтральных центров энергетически выгодно распасться на ионизованные центры:

$$2X^{\circ} \to X^{-} + X^{+}. \tag{3}$$

Сравнивая уравнения (2) и (3), можно заключить, что состояние Sn_3^{2+} в мессбауэровских спектрах As_xS_{1-x} :¹¹⁹Sb и As_xSe_{1-x} :¹¹⁹Sb отвечает однократно ионизованному акцептору, состояние Sn₆⁴⁺ отвечает однократно ионизованному донору, а неустойчивое состояние Sn³⁺ представляет собой нейтральное состояние амфотерного двухэлектронного центра олова с отрицательной корреляционной энергией.

Материнские атомы ^{119m}Те

Эмиссионные мессбауэровские спектры стекол As_xS_{1-x} :^{119m}Te и As_xSe_{1-x} :^{119m}Te представляют собой наложение двух уширенных линий (см. рис. 5 и табл. 3). Более интенсивная линия имеет изомерный сдвиг, который для стекол, обогащенных халькогеном, отвечает атомам олова, имеющим в своем окружении преимущественно атомы халькогена. Этот спектр следует приписать центрам олова Sn^o, образовавшимся в структурной сетке стекла, построенной практически только из структурных единиц (-As-X-As-), после распада материнских атомов ^{119m}Te в узлах халькогена. С ростом содержания в стекле атомов мышьяка в структурной сетке стекла увеличивается число структурных единиц (-As-X-As-), вследствие чего изомерный сдвиг этой линии изменяется, отражая появление в локальном окружении атомов олова атомов мышьяка.

Рис. 5. Эмиссионные мессбауэровские спектры 119m Te стекол As_xS_{1-x} и As_xSe_{1-x}. Показано разложение экспериментальных спектров на два синглета, отвечающих центрам Sn⁴⁺ и центрам Sn^o

Таблица 3

Стекло		IS,	G,	<i>S</i> ,	IS,	G.	<i>S</i> ,	
	x	мм/с	мм/с	отн. ед.	мм/с	мм/с	отн. ед.	
		Центры Sn ^o			Центры Sn ⁴⁺			
$As_x S_{l-x}$	0,45	2,64	1,34	0,68	1,47	1,43	0.32	
	0,40	2,65	1,35	0,72	1,47	1,42	0.28	
	0,286	2,81	1,37	0,75	1,45	1,43	0.25	
	0,20	2,81	1,36	0,78	1,48	1,40	0.22	
As_xSe_{1-x}	0,60	2,66	1,35	0,70	1,71	1,38	0.30	
	0,50	2,67	1,34	0,76	1,70	1,37	0.24	
	0,40	2,67	1,33	0,81	1,72	1,35	0.19	
	0,286	2,79	1,35	0,85	1,73	1,38	0.15	
Погрешности		±0,02	±0,03	±0,02	±0,02	±0,03	±0,02	

Параметры эмиссионных мессбауэровских спектров ^{119m}Те при 80 К

Для объяснения появления в мессбауэровских спектрах стекол As_xS_{1-x} :^{119m}Te и As_xSe_{1-x} :^{119m}Te второй (менее интенсивной) линии следует иметь в виду, что образованию мессбауэровского уровня ^{119m}Sn после распада ^{119m}Te предшествует двойной электронный захват, причем максимальная энергия отдачи испускания нейтрино для дочернего зонда составляет ~ 24 эВ. Это позволяет ожидать в мессбауэровских спектрах As_xS_{1-x} :^{119m}Te и As_xSe_{1-x} :^{119m}Te появления состояний, отвечающих атомам ^{119m}Sn, смещенным из этих узлов. Менее интенсивная линия имеет изомерный сдвиг, зависящий от химической природы халькогена, и она отвечает центрам ^{119m}Sn⁴⁺, сместившимся за счет энергии отдачи из структурной сетки, образованной атомами халькогена.

Заключение

Примесные атомы ¹²⁹I, образующиеся после радиоактивного распада ¹²⁹Te в стеклах As_xS_{1-x} и As_xS_{1-x} , электрически неактивны и находятся в узлах халькогенов, образующих структурные единицы в виде цепочек типа (-As-S-As-) и (-As-S-S-As-), причем доля последних увеличивается с увеличением содержания халькогена в сплаве. Примесные атомы ^{119m}Sn, образующиеся после радиоактивного распада атомов ¹¹⁹Sb в структуре стекол As_xS_{1-x} и As_xSe_{1-x} , локализуются в узлах мышьяка в зарядовых состояниях Sn^{2+} и Sn^{4+} и играют роль двухэлектронных центров с отрицательной корреляционной энергией. Доля Sn^{4+} увеличивается с ростом содержания атомов халькогена в стекле. Большая часть дочерних атомов ^{119m}Sn, образующихся после радиоактивного распада материнских атомов ^{119m}Te в стеклах As_xS_{1-x} и As_xSe_{1-x} , находится в узлах халькогенов, и они электрически неактивны. Значительная энергия отдачи дочерних атомов в случае распада ^{119m}Te приводит к появлению смещенных атомов ^{119m}Sn.

СПИСОК ЛИТЕРАТУРЫ

1. Бордовский Г. А., Марченко А. В. Идентификация U⁻-центров в кристаллических и стеклообразных полупроводниках и полуметаллах методом мессбауэровской спектроскопии. СПб.: Наука, 2010. 290 с.

2. Серегин П. П. Физические основы мессбауэровской спектроскопии. СПб.: СПбГПУ, 2002. 169 с.

3. Электронные явления в халькогенидных стеклообразных полупроводниках. СПб.: Наука, 1996. 486 с.

4. Su T., Hari P., Ahn E., Taylor P. C., Kuhns P. L., Moulton W. G., Sullivan N. S. // Phys. Rev. B. 2003. V. 67. Art. no. 085203.

5. Корнева И. П., Синявский Н. Я., Ostafin М., Nogaj В. Физика и техника полупроводников. 2006. Т. 40. Вып. 9. С. 1120–1122.

REFERENSES

1. Bordovsky G. A. Marchenko A. V. Identifikaciya U⁻-centrov v kristallicheskikh I stekloobraznykh poluprovodnikakh I polumetallakh metodom Mossbauerovskoi spektroskopii. Spb.: Nauka, 2010. 290 s.

2. Seregin P. P. Fizicheskii osnovy Mossbauerovskoi spektroskopii. Spb.: SPbGPU, 2002. 169 s.

3. Elektonnye yavleniya v khalkogenidnykh stekloobraznykh poluprovodnikakh. Spb.: Nauka, 1966. 486 s.

4. Su T., Hari P., Ahn E., Taylor P. C., Kuhns P. L., Moulton W. G., Sullivan N. S. // Phys. Rev. B. 2003. V. 67. Art. no. 085203.

5. Korneva I. P., Sinyavskii N. Ya., Ostafin M., Nogaj B. Fizika i tekhnika poluprovodnikov. 2006. T. 40. Vyp. 9. S. 1120–1122.

Ю. А. Гороховатский, А. А. Гулякова

ИССЛЕДОВАНИЕ РЕЛАКСАЦИИ ЗАРЯДА В ПЛЕНКАХ УДАРОПРОЧНОГО ПОЛИСТИРОЛА С ВКЛЮЧЕНИЯМИ ДИОКСИДА ТИТАНА

Работа выполнена при поддержке РФФИ (грант 10-02-01065-а)

Приведены результаты исследования процессов релаксации заряда в пленках ударопрочного полистирола (УПС) без наполнителя и с добавлением диоксида титана (модификаиия рутил) при помоши методов, таких как: измерение токов термостимулированной деполяризации (ТСД), диэлектрическая релаксационная спектроскопия (ДРС), динамический механический анализ (ДМА) и дифференциальная сканирующая калориметрия (ДСК). Диэлектрический спектр и спектр токов ТСД в исследуемых образцах обнаруживают два релаксационных процесса. Наличие низкотемпературного релаксационного процесса характерно для всех образцов и может быть соотнесено с переходом стекло-резина в УПС (что подтверждено данными ДСК и ДМА). Внедрение рутила в качестве наполнителя не влияет на температурное положение этого релаксационного пика. Высокотемпературный релаксационный переход обнаружен только для композитных пленок, величина пика токов ТСД и диэлектрических потерь растет с увеличением объемной концентрации наполнителя в образцах. Появление этого пика может быть связано с процессом формирования «квазидиполей» на границе раздела сред полимер-наполнитель. Для этого процесса были определены значения наиболее вероятной энергии активации и эффективного частотного фактора при помощи метода регуляризующих алгоритмов Тихонова: W = 1, 1 эВ, $\omega = 10^{11} c^{-1}$.

Ключевые слова: ударопрочный полистирол, диэлектрическая спектроскопия, механическая релаксация.

Yu. Gorokhovatskiy, A. Gulyakova

THE INVESTIGATION OF CHARGE RELAXATION IN HIGH-IMPACT POLYSTYRENE FILMS WITH TIO₂ INCLUSIONS

The charge relaxation processes in pure high-impact polystyrene films (HIPS) and HIPS filled with titanium dioxide (TiO₂) inclusions of rutile modification are investigated by means of the combination of dynamic-mechanical and dielectric methods: thermally stimulated depolarization current (TSDC) measurements, dielectric relaxation spectroscopy (DRS), dynamic mechani-