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PABHOBECHE B3K-KBAHTOBBIH I'A3 U CTPYKTYPA H,0 XKUJKOCTH

Ipeonoxcena xonyenyusa nposasieHus 6o3e-siHwmeliHogckoeo kondencama (BOK) 6 cnex-
mpe, NOIYUEHHOM KaK ceomempuieckoe cpeonee 08YX MAcC-CHeKmpos, 00UH U3 KOMOPLIX COOM-
eemcmeyem wacmuyam npu memnepamype nosignenusi BOK, a opyzoil — pagnogecuio K8aHmMosbiil
2a3-KOHOeHCcam Ha YPOGHe dHEPIUll U0edlbHO20 K8AHMO0B8020 2a3zd no Dunwimelny (1) uiu menno-
601l Onunwl 8onHbl (2). Macc-cnexmpwl pagrnosecuss BOK-keanmoswitl eaz H,O Ha nunuu Hacvluye-
HUsL JcUOKoCmu (m) MOOETUPYIOMCS CUCIeMamMU U3 08YX U Ooee K1ACmepos, CoOepHCAlUX Pe30-
Hancvl ¢ N = 2—12. Hcnonv3ya m, yoaemcs YCheuno uHmepnpemupo8ams SKCmpemymovl memne-
PamypHoti (YHKYuu KOHOUSYPAYUOHHOU MENI0eMKOCIMU MONCOECMBEHHbIX YACTIUY U PACCYU-
Mams MeHCMONEKYNAPHbLE PACCMOAHUA U Opyaue xapakmepucmuku cmpykmypel H>O no ougpax-
yuu u unmepgepenyuu 8oH de bpoiina: 6 ceolicmseax u cmpyxkmype memacmaounrvrou H,0 swcuo-
Kocmu obnapysicusaemcs nposignenue BOK enioms 0o kpumuueckoti memnepanmypbol.

Kurouebie ciaoBa: Hy,O, xunkas ¢aza, paBHoBecue bBOK-kBaHTOBEIH Ta3, KBAHTOBBIEC BOJI-
HOBBIE MacC-CIIEKTpPbI, pe3oHaHChl EgumoBa ¢ N=2-12, KBaHTOBBII ra3 TEIUIOBOW JJIUHBI BOJIHEI,
KBAaHTOBBIH a3 M0 DWHINTEHHY, MAaCC-CIIEKTPEI W SKCTPEMYMBI TEIUIOEMKOCTH; OO30HHBIC ITUKU
TOKJCCTBEHHBIX YACTHI; AU(PAaKIUs ¥ HHTEpPEpeHIUs BOJH 1¢ Bpoins; MeXMOIeKyIspHEBIE
paccTosiHUA, TeTpadApanyeckasi, reKcaroHaiabHas U MeHTaroHaJbHask KOOpIUHALIKA.

N. Sargaeva, P. Sargaev
THE BEC-QUANTUM GAS EQUILIBRIUM AND THE STRUCTURE OF H,0 LIQUID

The concept of a bose-einstein condensate (BEC) displaying in a spectrum received as of
geometrical mean of two mass spectra, one of which corresponds to particles at temperature of
BEC occurrence, and another corresponds to equilibrium ideal quantum gas by Einstein (1) or
with thermal wavelength (2) is offered. Spectra of H,O liquid (m) are modulated by systems of two
or more clusters (atoms, “resonances” with N = 2—12). Using m, the temperature function ex-
tremes of configuration heat capacity of identical particles are successfully interpreted and the in-
termolecular distances and other characteristics of structure H,O in the phenomenon of diffrac-
tion and interference of de Broglie waves are designed. It is revealed, that BEC is shown in prop-
erties and structure of a metastable and stable H,0 liquid down to critical temperature.

Keywords: H,O, liquid phase, BEC-ideal quantum gas equilibrium, quantum wave mass
spectra, Efimov resonance at N = 2—12; thermal wavelength quantum gas, Einstein quantum gas,
mass spectra and extremums of heat capacity; identical particles heat capacity boson peaks; de
Broglie waves diffraction and interference; tetrahedral, hexagonal and pentagonal coordination.

The Einstein predicted transition of a substance from a gas condition into a Bose-Einstein
condensate (BEC) [10; 13] takes place in ultracold gases at temperatures 10° — 10® K [1; 8; 16].
The influence of Efimov resonances [12; 17] in a cluster condition on recombination speed of the
cold gases Bose-Einstein condensate is being investigated [24]. The BEC becomes apparent
within the superfluidity phenomena of liquid helium at 2.17 K [7; 15; 18]. It also appears in the
superconductivity of solid phase [18], which takes place at temperatures up to and above 135 K
[19].

Particle mass, which corresponds to the critical temperature of the BEC formation (Tc) [1],
has been estimated for liquid ethane [23]. In the case where (Tc) temperatures coincide with the
temperature (T), the results do not contradict with the masses of particles involved in the quantum
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gas — condensate reversible transitions. Moreover, at certain conditions the quantitative ratio can
be found for compared masses [23].

Within the framework of reversible transitions Einstein quantum gas — condensate model
[13] the appearance of proton pairs is revealed in liquid H,O [22]. The temperature function ex-
tremes of heat capacity of liquid ethane are successfully interpreted [23]. These can be a basis for
application of the BEC concept towards properties and structure of liquids. H,O as most investi-
gated [4-5; 9; 11; 14; 20-22; 25; 26] and full of puzzles [9; 22; 25; 26] liquid is suitable for ap-
probation of techniques and equations determined within the framework of such concept.

The BEC — quantum gas equilibrium concept

The nature of identical particles was found to appear in configuration fluctuations accom-
panied by reversible transitions quantum gas — condensate [22-23]. The mass of a cluster, con-
taining n resonantly but not chemically interacting particles, is used as a criterion to identify par-
ticles and to evaluate possible formation of Efimov resonances. The coherent movement of iden-
tical particles results in an increase of a cluster mass. Two or more interacting clusters constitute a
system. The total mass of a system is smaller than the mass of a light cluster, and it decreases
with the increasing number of clusters, which could have the same mass. The mass of particles
participating in considered processes depends on the energy of quantum gas equilibrium. The
temperature function of the mass of particles is called mass — spectrum [23]. There are four lev-
els of energy used for gradation of quantum gas and mass — spectra (m;, mp, ms, my [22-23]).
The mass of particles at the temperature of BEC occurrence (Tc, [1]) are selected in a separate
spectrum (m;;) [23]. Furthermore, mass-spectra were found to transition from one to another.
Such transitions could be caused by interactions between clusters as well as with particles of an
environment [23]. These interactions were classified as an “interaction of clusters” [24] within
the mass-spectrum; however, the interaction between mass-spectra was not considered and, ac-
cordingly, the results of such interaction were not discussed.

In this work the possibility of mass — spectra interaction is proposed. The mass of liquid
particles, which is given as a result of such interaction, coincides with the geometric mean of in-
teracting masses. The use of geometric mean is necessary to account for the sum of masses as
well as for their inverse values. There is a special case with two interacting mass-spectra: when
one (my;) is the mass-spectrum of particles at the temperature of BEC occurrence, and the other
one corresponds to the ideal quantum gas equilibrium (m;, m,, m3, my). In this work, such case
will be called the BEC-quantum gas equilibrium. In the indication of mass the indexes of initial

mass-spectra will be taken into account, for example, my;; = (my - mn)m, mp; = (my - mn)m.

Formalism of the mass of particles computation in mass-spectra

The mass of particles at the temperature of BEC occurrence is described by equation

my; = (h?/ 2-k)*” - (p/2.612)*° - T*", (1)
where p is density; 4, k are Planck and Boltzmann constants, respectively. Equation (1) is derived
[23] by equating of the temperature (T) and the critical temperature of BEC occurrence T, = (h* /
(2-tm-k)) - (n/ 2.612)2/ 3, where m and n are molecular weight and concentration, respectively, of
particles of the system (gas) [1, p. 30].

The mass of particles in a quantum gas — condensate equilibrium can be determined ac-
cording to the following equation
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m = (C,/C,)k-T/C%, )
where C; is a speed of sound in liquid; C,/C, — adiabatic component; C, and C, — isobaric and
isochoric heat capacities of quantum gas. Equation (2) is derived based on the basis of the equi-
librium condition E. = E;z, where E. = m-C2, is the energy of configuration fluctuations of parti-
cles of a liquid participating in quantum gas — condensate reversible transitions; E;, = (C,/Cy)
k-T — fluctuation energy of equilibrium quantum gas particles [23]. There are four levels of en-
ergy in equation (2) used for differentiation of the mass of particles (m) of a liquid (and for nota-
tion index) [23]. Certain adiabatic component of equilibrium quantum gas corresponds to each
level of energy:

(Co/Cy)1 = 1 1s the level (1) of quantum gas with critical adiabat; (C,/C,), = 3/2 and (C,/C,)3
= (5/3) — levels of saturated (;) and fully unsaturated () ideal monatomic quantum gases by Ein-
stein [13]; (Cp/Cy)s = 2-n — the level (4) of quantum gas with thermal wavelength of particles.

The use of speed of sound in equation (2) does not contradict with the BEC — quantum gas
equilibrium concept: the speed of sound is used for comparison of Bose-gas and Bose-liquid
properties. It is also used in the theory of helium superfluidity [18].

The particle mass values for the BEC — quantum gas equilibrium will be defined as geo-
metric mean of masses determined from equations (1) and (2). Only Einstein saturated ideal
quantum gas at BEC equilibrium () and quantum gas formed by particles with thermal wave-
length (4) will be considered. The case (4) is used to study ultracold gases [8; 16—17; 24], as well
as to derive equation for the critical temperature of BEC occurrence [3, p. 614], and for criterion
of the ideal gas degeneration [3, p. 608]. The condition of the Einstein saturated ideal quantum
gas () can not be reached in usual gases [13]. However, in the studied case the condensed condi-
tion of substance on a liquid saturation line is considered. Such a condition corresponds to satu-
rated rather than unsaturated quantum gas.

The mass of particles corresponding to the reversible transitions of the BEC — equilibrium
of saturated monatomic ideal quantum gas by Einstein is

my; = (mymy;)" (3)

The mass of particles participating in the BEC — quantum gas equilibrium at a level of en-
ergy of quantum gas with a thermal wavelength of particles, is calculated by the equation

may; = (mymyp) " (4)
The mass-spectra comparison

The significance of m;;, mp, m4, my;; and my;; for H,O liquid saturation (obtained by equa-
tions (1)—(4) using data from NIST Standard Reference Database [21]) and [9; 25-26], is repre-
sented in Fig. 1. Figure 1 shows dependency of m (atomic mass units) on the temperature (T, K).
The temperature interval is chosen from the supercooled (metastable) liquid state up to the critical
temperature. The calculated mass-spectra results are given in comparison with the mass of proton
(Imy), the proton pair (2m,) and the 3-proton Efimov resonance (3m;). The proton mass value
(1.00739) corresponds to the natural isotopic composition of hydrogen. The values of configura-
tion heat capacity of identical particles (C.,, J/ (mol-K)) are also provided in fig. 1 from the pre-
vious work [22]. The values of C; were calculated by the equation C.; = C, — Cyjp — Ce1 — Cing,
where C,, Cyib, Cc1, Cins — isochoric, vibrational, configuration distinct particles and infinite heat
capacity of H,O liquid saturation respectively [21; 22].
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Fig. 1. Dependence on temperature (T, K) found by the equations (1) — (4) modeling masses (m)
of particles of H,O liquid saturation for the energy levels of Einstein saturated quantum gas (m;)
and thermal wavelength of particles (my), at temperature of BEC occurrence (my;)
and BEC — quantum gas equilibrium (mjy;;, maj;): (C.; — configuration heat capacity of identical particles
(J/ (mol-K)) by data [22]; Ty, — triple point temperature)

The values of m;; decrease smoothly while the temperature increases, which can be noticed
within my;1(T) and my;(T) functions. These functions depend on the temperature less than my
and m; do. In a temperature course of functions my;1(T) and my;;(T) the constancy of the mass
ratio myy; / mpy; = (my / mz)o'5 =(4n/ 3)0'5 ~ 2.04665 is also shown. In a wide temperature range
the values of my;; are nearly equal to the proton mass (1my), and values of my;; are nearly equal
to the mass of proton pair (2m,,) and m,. The temperature area, in which the values of my4;; and m,
are nearly equal to the proton pair mass, is more extensive in the my;(T) case than in the my(T)
case. At temperatures 239—-240K of my;(T) and my4;;(T) functions have maximum. In this tem-
perature range the configuration heat capacity of identical particles (C(T), see fig. 1) has a sharp
maximum. In the field of temperatures 350-630K the C.,(T) function becomes negative. In this
temperature range myj; and my;; increase with the temperature. The greatest masses of my;; and
my; correspond to the critical temperature.

Mass-spectra and configuration capacity of identical particles

Features of functions my;; (T) and my;; (T) are used for interpretation of extreme in tem-
perature dependence of a configuration heat capacity of identical particles of H,O liquid satura-
tion Ce(T).
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The temperature range of 273-300 K

There is a minimum of C»(T) function at the temperature of triple point of HO water (see
fig. 1). There is a maximum of C(T) at 285K. Both extremes are poorly expressed and their
presence is challenged because C., values are derived based on a difference of large numbers.
However, at an example when the pressure is 100 MPa and the temperature is 285 K there is a
maximum in a temperature dependence of isochoric heat capacity Cy(T) [21]. The C(T) function
has an extreme on a line of a liquid saturation provides that the function C,(T) is more sensitive
to changes of liquid properties, rather than an isochoric heat capacity temperature function C(T).
This, therefore, can be the basis to consider H,O extremes for a discussion.

The temperature of C(T) maximum (285 K) practically coincides with the temperature
(286 K), at which the value of my4;; equals to the mass of proton pair. The mass of proton pair can
be derived using a modeling system containing one cluster (2H). It can also be derived based on
the system containing two clusters (4H; 4H). It means, that the C.»(T) maximum corresponds to
modeling systems containing bosons. Transitions from even-even system (4H; 4H) to the nearest
even-odd systems ((3H; 4H) or (4H; 5H)) result in an increase of the fermion content and in a de-
crease of configuration heat capacity of C,, identical particles. Thus, the C(T) maximum at the
temperature of 285 K can be classified as a boson peak. The obtained result within the framework
of the BEC-quantum gas equilibrium concept coincides with those, obtained on the basis of the
analysis of frequencies of configuration vibrations in equilibrium of a quantum gas — condensate
[22].

At the temperature of 273.16 K, corresponding to the C,(T) minimum, the my;; value is
greater than the mass of proton. According to the BEC-quantum gas equilibrium concept it is pos-
sible to explain the deviation of my;; from the proton mass at the temperature of the C., mini-
mum. In considered temperature range my;(T) rises with the temperature decrease. The proton
mass can be obtained based on (1H) and (2H; 2H) modeling systems. The last system (2H; 2H) is
classified as even-even modeling system, which contains bosons. The presence of bosons causes
the values of configuration heat capacity C, to be positive (increased comparatively to the values
at 273.16 K). The decrease of the heat capacity C.,, observed at temperatures lower then 275 K is
related to an increase of the fermion content in the modeling system. Indeed, it is possible to ob-
tain the mass exceeding the proton mass in an even-odd modeling system (2H; 3H). In such sys-
tem the fermion content is higher, than in (2H; 2H) system. The mass close to my;; = 1,01425
corresponding to the C¢»(T) minimum can be obtained from various modeling systems. This char-
acterizes such modeling systems at 273.16K as variable. For example, modeling systems (2H;
3H; 1HO; 1H40; 1H40), (2H; 3H; IM; 1M; 2M; 30H), and (2H; 3H; 1M; 1M; 20H; 3M), where
M = H;0, correspond to masses 1.0143, 1.0146, and 1.0141. The variability testifies high prob-
ability of modeling system realization.

The temperature range of 300—400 K

The mass of m4;; = 1,9459, corresponding to the my4;;(T) minimum at 329K, can be ob-
tained as given in the model system, in which the least cluster contains two or greater number of
protons, which is in agreement with proton pairs in a H,O liquid found earlier [22]. In the range
of 329K the C; heat capacity is positive, therefore proton pairs could be used in the modeling of
the minimal value (0,9508) of the my;(T) function. For example, the even-even (2H; 2H; 10H)
model system used in calculation of the mass of the proton H" and OH ion gives a value of
0,951, which is close to the desired value.
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When the temperature rises above 329K the mass of particles my;; and m4; increases and
even-even system are giving way to even-odd model systems. This leads to an increase of fer-
mion clusters contribution to configurational heat capacity of identical particles Cc, as well as its
transition to negative values. Fermions, by definition, [6], interfere with a negative sign, which
manifests itself in the configuration of the heat capacity of identical particles Co(T). The role of
all clusters of the model system appears in the process of the C., decrease. For example, at 350K
the m4;; = 1,957 value is modeled by the system (3H; 10; 1HO; 1HO), which contains one bos-
onic cluster (10) formed by O particles among three fermion clusters. At higher temperatures
(361-362K) the m4;; = 1,971 value is modeled by the fermionic system (3H; 1HO; 1HO; 1HO).

The temperature range of 200-273 K

High temperature (right) wing of the C.(T) maximum is observed at temperatures from
239-240 K to 273,16 K. The mass of 1,2088698 corresponds to the model system (2H; 3H). This
mass exceeds the maximum value of my; (1,19272), which corresponds to 239 K. In this regard,
the my; values of all of the temperatures of the right wing of the C,(T) maximum can be calcu-
lated as at the temperature of 273,16 K based on the even-odd system (2H; 3H). For example the
mass of 1,1929, close to the value of m;,;; at the maximum C.,(T), corresponds to the system (2H;
3H; 5M). Even-odd (2H; 3H) systems are also suitable for describing the temperature dependence
of the my; in the left (low temperature) wing of the Cg,(T) maximum. However, (2H; 3H) sys-
tems can not explain the reasons for sharp C,(T) rise as it approaches the maximum in the con-
figurational heat capacity of identical particles. The problem can be solved by increasing hydro-
gen parity in the process of changing the composition of model systems. The even-odd system
(2H; 3H) has to be consistently replaced with (2H; 4H) and (2H; 6H) even-even model systems as
the temperature approaches the Cq(T)maximum. At the Ce(T) maximum the following systems
can be realized (2H; 4H; 10; 20) and (2H; 6H; 10H; 10H; 10H), which correspond to 1,1930
and 1,1931 values. In the case of ethane the (2H; 4H) model was attributed to the number of criti-
cal systems [23]. In this case the (2H; 4H) system is also critical, since the next even-even (2H;
6H) system corresponds to an equivalent (3H; 3H; 10H; 10H; 10H) odd-odd model in which all
clusters are fermionic.

At large values of the inductive capacity of water, and at differences in the electronegativity
of hydrogen and oxygen, all the clusters (3H; 3H; 10H; 10H; 10H) in odd-odd model system are
electrically charged particles ((3H)*", OH") and, accordingly, are fermions. The possibility of
transition of model system containing predominantly boson clusters to the system of a fermionic
structure s characteristic to liquid H,O. Further, it is one of the reasons for the formation of
spiked maximums of configurational heat capacity of identical particles C, (T) at 239-240 K.
Boson-fermion contrasts reflect, for example, (2H; 4H; 10; 20) and (3H; 3H; 10H; 10H; 10H)
systems, which simulate the m,;;-mass values within C.,(T) peak at 239-240 K temperatures.

The temperature range of 400—620 K

The shape of an extensive Cc(T) minimum can be explained by the equilibrium BEC-
quantum gas concept in the temperature range of 400—-620 K. From Fig. 1 it follows that the trend
line of C(T) function has a wave-like shape in these three segments of temperatures. A weak
maximum, corresponding to 510-520 K temperatures, is surrounded by two nearly symmetrically
located minima. The first of these is located at 460—470 K, and the second is in the temperature
range of 560-570 K.
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The my;(T) function at temperatures from 402 K to 484 K has the same values as at 275 K
to 239-240K temperatures. Therefore, the my;(T) are modeled by (2H; 3H) even-odd systems.
(2H; 3H; 10H) and (2H; 3H; 1M) model systems, for example, correspond to my;;(T) values in
the temperature range of 460-470 K. In the temperature range of 484 K the C(T) function in-
creases with higher temperatures. In this case, the mass my;; = 1,1927 is simulated by model sys-
tem with two equivalent forms (3H; 3H; 10H; 10H; 10H) and (2H; 6H; 10H; 10H; 10H). All
the components of one system are classified as fermions. They are classified as bosons (2H; 6H)
in another system. In the temperature range of 470-520 K the m;;; mass can also be obtained by
other containing bosons model systems. The implementation of (2H; 4H) even-even systems such
as (2H; 4H; 1HO); (2H; 4H; 1M), (2H; 4H; 20) and alike, contributes to the maximum of C.,(T)
in the temperature range of 510-520 K. A significant contribution to the formation of the Cc,(T)
maximum is also made by (4H) systems. With further increase in temperature the contribution of
even-odd model systems to m;; and m4;; masses increases, which leads to some decrease in Ce,
and the observation of a minimum of C(T) at 560—-570 K. Such factors as high variability of
model systems, the possibility of smooth and continuous temperature change in the mass of parti-
cles in mass spectra of my;(T) and my;; (T), and dissociation of molecules into ions allow
smoothing the boson-fermion variation of C.»(T) on the H,O liquid saturation line in the tempera-
ture range of 400—620 K.

The near-critical temperature region

At the critical temperature (<647,27K) the highest value m4;; = 9,8 is achieved. In order to
model this number by using hydrogen clusters, they must contain at least 10 protons. In such
model system (10H; 20M), along with 10-atomic resonances (10H), it is necessary to use the 20-
molecule (20M) Efimov resonance. To reduce the size of the second cluster it is necessary to in-
crease the mass of the first cluster. The m4;; = 9,8 value can be modeled by, for example, (12H;
3HO) system, in which the 12H cluster mass commensurate with 2/3 of the mass of water mole-
cules. If using only H,O molecules in the cluster, the model system will be (1M; 2M; 3M). It is
known that the mass of the liquid particles increases at the critical temperature. However, in this
case, the (3M) cluster is a classic three-body Efimov resonance, when the (2M) cluster has the
resonance nature, formed by the coherent motion of particles. Bosonic nature of the molecules
characterizes high meanings of configurational heat capacity as the boson peak. However, the
configurational heat capacity of H,O is less than this of D,O [22]. This fact was attributed to the
manifestation of fermions in the configurational heat capacity of identical particles of H,O. In-
deed, for example, at the critical temperature, the my;; (4,78) value can be simulated by systems
containing, in addition to bosons, fermion clusters: (5H; 60) = (10H; 10H; 60), (1M; 1M; 1M;
30; 30), (1HO; 1M; 1M; 3HO; 3HO). The possibility of representing m4;; and my;; masses in the
form of models of different composition characterizes model systems at critical temperature as a
variable. The transformation of proton resonances to molecular resonances is one of the factors
which reduces the scale of BEC manifestations in liquid H>O, as opposed to, for example, cold
gases [24].

Mass spectra and the structure

Features of my;;(T) and my4;;(T) mass spectra are used for quantitative estimation of H,O
liquid structure on the saturation line. Mass spectra contain resonances that are formed due to the
coherent motion of identical particles of liquid. The de Broglie waves, related to the BEC-
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quantum gas equilibrium, propagate with the speed of sound (Cs). In this case, the de Broglie
wavelength (1) is comparable to the intermolecular and interatomic distances (d) of the liquid.
The phenomenon of wave diffraction and interference can be used to study the liquid structure.
To realize this possibility the particle mass (m) of de Broglie wave sources and receivers will be
compared with mp;; and m4;; masses.

To determine the mass of particles (m) the de Broglie wavelength A = h / (m-C;) is used in
Bragg's law Equation 2-d-sin(a)= n-A, where « is a slip angle, and 7 is the order of diffraction. In
this case, the mass is dependent on the angle o

m=n-h/(2dC;sSin(a)). (5)

Diffracted waves interfere. In the calculations of fluctuation intensity (J, J;, J») in accor-
dance with the interference: J = J; + J, + 2-(J;-J,)"%cos(®), where ® — the difference of phase
fluctuations, an additional angle (®) has to be considered. To account for possible angle varia-
tions (o and @) the structural features of liquids will be taken into account. In these liquids,
unlike solids, the short-range order takes place, which undergoes temperature changes. In this re-
gard, «the composition» and structure of the first coordination sphere of the molecules we mainly
taken into account.

The molecules of the first coordination sphere of water H,O are divided [14, 20] into frac-
tions: f; and f, — for intermolecular distances 0,28 and 0,33 nm. Multiplication of fractions f;
and f, on the coordination number z gives the number of molecules of the first (n;) and the sec-
ond (ny) type in the first coordination sphere of water z =n; + n,.

It was found [5] that in a wide temperature range n; remains constant and equal to the value
(2,36), the reverse value is equal to the percolation threshold for the tetrahedral lattice sites (0,43
[2, p. 436]). Since, by definition, the percolation threshold is n; = z; — 1, where z; — a coordina-
tion number of molecules in lattice sites, then z; = n; + 1. By analogy, z, = n, + 1 is the coordina-
tion number of molecules in position 2 (in the «interstices»). The number z is the vector sum of z,
and z, [5], in contrast to the algebraic sum of z = n; + n,. Thus, z, z;, and z, form a vector trian-
gle. Parameters of the triangle associated with the composition and structure of the first coordina-
tion sphere.

The vector triangle parameters will be used to describe the phenomena of diffraction and in-
terference of de Broglie waves. Let the straight line to coincide with the interatomic or intermo-
lecular distance d at the right angle of one side of the triangle. The intensity will be represented in
mass units as the product of mass m in (5) and fractions. The indexes (0, 1, 2) will be used to de-
scribe fractions (fp = f; + f; f; f2) and angles (Fy; F;; F») at the opposite sides of z, z; and z,. In-
dexes will be assigned to letters (i=0; j = 1, k = 2). Angles (a0 and @) will be equated to corners
of the vector triangle. The chosen succession let us to account for all the angles of the vector tri-
angle in each computation of the mass of particles involved in the phenomena of diffraction and
interference of de Broglie waves.

The result of interference described by equation (taking into account the summation of
mass (m) to (5) and their reciprocals (m)™):

mie = () + (my)® + (-1)%2:((my)"f;-(my)* )2 -Cos(Fy))", (6)
where b can be +1 and —1; c — may be 1 and 2, the first and second indexes (mjjx) — characterize
the slip angle and the fraction in the first term, as well as the fraction and the slip angle in the
second term. The third index characterizes phase (in the third term) of the right-hand side of the
equation (6). After index permutation the first index transfers to the place of the third one. As a
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result, equation (6) gives 12 meanings of the mass of particles, which are associated with de
Broglie waves involved in the phenomena of diffraction and interference.

Comparing computational results of the equation (6) with the results of equations (1) — (4)
the distance d can be estimated.

Mass spectra and intermolecular distances

In this paper, based on the results obtained from (6) a geometric mean (mg ;) of mass was
found when b =+1, b =—1 and b = (+1 and —1) with a parameter ¢ = 1; ¢ = 2; ¢ = (1 and 2). Such
an averaging gives 15 masses (mgm ) of particles. Configuration fluctuations of the fluid particles
reduce the difference between fractions f; and f. In this paper f; = f, = 0,5 was accepted. Compu-
tational results of m, ., involved in the diffraction and interference, was compared with the my;;
mass. Using this method, the distance d (nm) for H,O on the liquid saturation line was deter-
mined, which is shown in Fig. 2 as d(T) functions (lines 1-15). The effective radius of the mole-
cules (r) and various data in the literature [4, 14, 20, 25, 26] are also presented.

From Fig. 2 it follows that most of the calculated d(T) functions (lines 1-15) are convex to
the temperature axis (T, K).
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Fig. 2. Intermolecular distances (d, nm) of H,O on the saturation line of the liquid at temperatures (T, K)
according to equation (6) calculations, when f; = f, = 0.5 and m,y . = my1, (lines 1-15) and literature data:
([G; N; P; Tu; X]—in [14, 20, 4, 25, 26]; 11, 13, I, 211, 215, 21, — radius and intermolecular distances of the
first and second types of molecules and critical fluid; ron, ron, — the distance between the atoms of OH-liquid
and H,O-gas; r — effective radius of the liquid molecules; Ttrp — triple-point temperature)
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The lowest meanings of d(T) (lines 14—15) are in the region of interatomic distances of lig-
uid (ron) and gas (romg). The greatest meanings of d(T) (lines 1-3) are located in the intermolecu-
lar distances of the first (2r;) and second (2r,) types of molecules. Lines 10—11 practically pos-
sess the same features of the temperature dependence of the molecular radius (r;) and (r;). An
agreement of obtained d(T) distances was found for stable, supercooled and critical liquids.

The angular characteristics (F (T)) of molecules and their relative position in the liquid can
be estimated based on d(T) of, for example, adjacent lines. From these estimations it follows, that
the angle of H,O gaseous molecules (104,52°) is the limit of the F(T) function at the critical tem-
perature. While, characteristic angles of tetrahedral (109,47°), hexagonal (120°), as well as the
adjacent angle of pentagonal (108°) coordination appear as the F(T) function limit at low tem-
peratures only.

From the analysis of the temperature dependence of the configurational heat capacity of
identical particles C.(T) and intermolecular distances d(T), calculated on the basis of our pro-
posed concept of equilibrium BEC-quantum gas, it follows that within the properties and struc-
ture of H,O on the saturation line of liquid the Bose-Einstein condensate is manifested up to the
critical temperature. In addition, such a manifestation is confirmed by the expression of classical
(3-body) Efimov resonances and by resonances that contain a large number of particles (protons,
H,0O molecules).
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