
Равновесие БЭК-Квантовый газ и структура H2O жидкости 
 
 

 43

Н. П. Саргаева, П. М. Саргаев 
 

РАВНОВЕСИЕ БЭК-КВАНТОВЫЙ ГАЗ И СТРУКТУРА H2O ЖИДКОСТИ 
 

Предложена концепция проявления бозе-эйнштейновского конденсата (БЭК) в спек-
тре, полученном как геометрическое среднее двух масс-спектров, один из которых соот-
ветствует частицам при температуре появления БЭК, а другой — равновесию квантовый 
газ-конденсат на уровне энергии идеального квантового газа по Эйнштейну (1) или тепло-
вой длины волны (2). Масс-спектры равновесия БЭК-квантовый газ H2O на линии насыще-
ния жидкости (m) моделируются системами из двух и более кластеров, содержащих резо-
нансы с N = 2−12. Используя m, удается успешно интерпретировать экстремумы темпе-
ратурной функции конфигурационной теплоемкости тождественных частиц и рассчи-
тать межмолекулярные расстояния и другие характеристики структуры H2O по дифрак-
ции и интерференции волн де Бройля: в свойствах и структуре метастабильной H2O жид-
кости обнаруживается проявление БЭК вплоть до критической температуры. 

Ключевые слова: Н2О, жидкая фаза, равновесие БЭК-квантовый газ, квантовые вол-
новые масс-спектры, резонансы Ефимова с N=2-12, квантовый газ тепловой длины волны, 
квантовый газ по Эйнштейну, масс-спектры и экстремумы теплоемкости; бозонные пики 
тождественных частиц; дифракция и интерференция волн де Бройля; межмолекулярные 
расстояния, тетраэдраическая, гексагональная и пентагональная координация.  
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THE BEC-QUANTUM GAS EQUILIBRIUM AND THE STRUCTURE OF H2O LIQUID 
 

The concept of a bose-einstein condensate (BEC) displaying in a spectrum received as of 
geometrical mean of two mass spectra, one of which corresponds to particles at temperature of 
BEC occurrence, and another corresponds to equilibrium ideal quantum gas by Einstein (1) or 
with thermal wavelength (2) is offered. Spectra of H2O liquid (m) are modulated by systems of two 
or more clusters (atoms, “resonances” with N = 2−12). Using m, the temperature function ex-
tremes of configuration heat capacity of identical particles are successfully interpreted and the in-
termolecular distances and other characteristics of structure H2O in the phenomenon of diffrac-
tion and interference of de Broglie waves are designed. It is revealed, that BEC is shown in prop-
erties and structure of a metastable and stable H2O liquid down to critical temperature. 

Keywords: H2O, liquid phase, BEC-ideal quantum gas equilibrium, quantum wave mass 
spectra, Efimov resonance at N = 2−12; thermal wavelength quantum gas, Einstein quantum gas, 
mass spectra and extremums of heat capacity; identical particles heat capacity boson peaks; de 
Broglie waves diffraction and interference; tetrahedral, hexagonal and pentagonal coordination. 

 
The Einstein predicted transition of a substance from a gas condition into a Bose-Einstein 

condensate (BEC) [10; 13] takes place in ultracold gases at temperatures 10-6 — 10-9 K [1; 8; 16]. 
The influence of Efimov resonances [12; 17] in a cluster condition on recombination speed of the 
cold gases Bose-Einstein condensate is being investigated [24]. The BEC becomes apparent 
within the superfluidity phenomena of liquid helium at 2.17 K [7; 15; 18]. It also appears in the 
superconductivity of solid phase [18], which takes place at temperatures up to and above 135 K 
[19]. 

Particle mass, which corresponds to the critical temperature of the BEC formation (Tc) [1], 
has been estimated for liquid ethane [23]. In the case where (Tc) temperatures coincide with the 
temperature (T), the results do not contradict with the masses of particles involved in the quantum 
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gas — condensate reversible transitions. Moreover, at certain conditions the quantitative ratio can 
be found for compared masses [23]. 

Within the framework of reversible transitions Einstein quantum gas — condensate model 
[13] the appearance of proton pairs is revealed in liquid H2O [22]. The temperature function ex-
tremes of heat capacity of liquid ethane are successfully interpreted [23]. These can be a basis for 
application of the BEC concept towards properties and structure of liquids. H2O as most investi-
gated [4-5; 9; 11; 14; 20-22; 25; 26] and full of puzzles [9; 22; 25; 26] liquid is suitable for ap-
probation of techniques and equations determined within the framework of such concept. 

 
The BEC — quantum gas equilibrium concept 

 
The nature of identical particles was found to appear in configuration fluctuations accom-

panied by reversible transitions quantum gas — condensate [22-23]. The mass of a cluster, con-
taining n resonantly but not chemically interacting particles, is used as a criterion to identify par-
ticles and to evaluate possible formation of Efimov resonances. The coherent movement of iden-
tical particles results in an increase of a cluster mass. Two or more interacting clusters constitute a 
system. The total mass of a system is smaller than the mass of a light cluster, and it decreases 
with the increasing number of clusters, which could have the same mass. The mass of particles 
participating in considered processes depends on the energy of quantum gas equilibrium. The 
temperature function of the mass of particles is called mass — spectrum [23]. There are four lev-
els of energy used for gradation of quantum gas and mass — spectra (m1, m2, m3, m4 [22−23]). 
The mass of particles at the temperature of BEC occurrence (Tc, [1]) are selected in a separate 
spectrum (m11) [23]. Furthermore, mass-spectra were found to transition from one to another. 
Such transitions could be caused by interactions between clusters as well as with particles of an 
environment [23]. These interactions were classified as an “interaction of clusters” [24] within 
the mass-spectrum; however, the interaction between mass-spectra was not considered and, ac-
cordingly, the results of such interaction were not discussed. 

In this work the possibility of mass — spectra interaction is proposed. The mass of liquid 
particles, which is given as a result of such interaction, coincides with the geometric mean of in-
teracting masses. The use of geometric mean is necessary to account for the sum of masses as 
well as for their inverse values. There is a special case with two interacting mass-spectra: when 
one (m11) is the mass-spectrum of particles at the temperature of BEC occurrence, and the other 
one corresponds to the ideal quantum gas equilibrium (m1, m2, m3, m4). In this work, such case 
will be called the BEC-quantum gas equilibrium. In the indication of mass the indexes of initial 
mass-spectra will be taken into account, for example, m411 = (m4 ⋅ m11)1/2, m211 = (m2 ⋅ m11)1/2. 

 
Formalism of the mass of particles computation in mass-spectra 

 
The mass of particles at the temperature of BEC occurrence is described by equation 
 

m11 = (h2 / (2⋅π⋅k))3/5 ⋅ (ρ / 2.612)2/5 ⋅ T3/5,    (1) 
where ρ is density; h, k are Planck and Boltzmann constants, respectively. Equation (1) is derived 
[23] by equating of the temperature (T) and the critical temperature of BEC occurrence Tc = (h2 / 
(2⋅π⋅m⋅k)) ⋅ (n / 2.612)2/3, where m and n are molecular weight and concentration, respectively, of 
particles of the system (gas) [1, p. 30]. 

The mass of particles in a quantum gas — condensate equilibrium can be determined ac-
cording to the following equation 
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m = (Cp/Cv)⋅k⋅T / C2
s,         (2) 

where Cs is a speed of sound in liquid; Cp/Cv — adiabatic component; Cp and Cv — isobaric and 
isochoric heat capacities of quantum gas. Equation (2) is derived based on the basis of the equi-
librium condition Ec = Ei.g., where Ec = m⋅C2

s is the energy of configuration fluctuations of parti-
cles of a liquid participating in quantum gas — condensate reversible transitions; Ei.g. = (Cp/Cv) 
k⋅T — fluctuation energy of equilibrium quantum gas particles [23]. There are four levels of en-
ergy in equation (2) used for differentiation of the mass of particles (m) of a liquid (and for nota-
tion index) [23]. Certain adiabatic component of equilibrium quantum gas corresponds to each 
level of energy: 

(Cp/Cv)1 = 1 is the level (1) of quantum gas with critical adiabat; (Cp/Cv)2 = 3/2 and (Cp/Cv)3 
= (5/3) — levels of saturated (2) and fully unsaturated (3) ideal monatomic quantum gases by Ein-
stein [13]; (Cp/Cv)4 = 2⋅π — the level (4) of quantum gas with thermal wavelength of particles. 

The use of speed of sound in equation (2) does not contradict with the BEC — quantum gas 
equilibrium concept: the speed of sound is used for comparison of Bose-gas and Bose-liquid 
properties. It is also used in the theory of helium superfluidity [18]. 

The particle mass values for the BEC — quantum gas equilibrium will be defined as geo-
metric mean of masses determined from equations (1) and (2). Only Einstein saturated ideal 
quantum gas at BEC equilibrium (2) and quantum gas formed by particles with thermal wave-
length (4) will be considered. The case (4) is used to study ultracold gases [8; 16−17; 24], as well 
as to derive equation for the critical temperature of BEC occurrence [3, p. 614], and for criterion 
of the ideal gas degeneration [3, p. 608]. The condition of the Einstein saturated ideal quantum 
gas (2) can not be reached in usual gases [13]. However, in the studied case the condensed condi-
tion of substance on a liquid saturation line is considered. Such a condition corresponds to satu-
rated rather than unsaturated quantum gas. 

The mass of particles corresponding to the reversible transitions of the BEC — equilibrium 
of saturated monatomic ideal quantum gas by Einstein is 

 
m211 = (m2⋅m11)1/2.         (3) 

 
The mass of particles participating in the BEC — quantum gas equilibrium at a level of en-

ergy of quantum gas with a thermal wavelength of particles, is calculated by the equation 
m411 = (m4⋅m11)1/2.     (4) 

 
The mass-spectra comparison 

 
The significance of m11, m2, m4, m211 and m411 for H2O liquid saturation (obtained by equa-

tions (1)−(4) using data from NIST Standard Reference Database [21]) and [9; 25−26], is repre-
sented in Fig. 1. Figure 1 shows dependency of m (atomic mass units) on the temperature (T, K). 
The temperature interval is chosen from the supercooled (metastable) liquid state up to the critical 
temperature. The calculated mass-spectra results are given in comparison with the mass of proton 
(1mp), the proton pair (2mp) and the 3-proton Efimov resonance (3mp). The proton mass value 
(1.00739) corresponds to the natural isotopic composition of hydrogen. The values of configura-
tion heat capacity of identical particles (Cc2, J/ (mol⋅K)) are also provided in fig. 1 from the pre-
vious work [22]. The values of Cc2 were calculated by the equation Cc2 = Cv – Cvib – Cc1 – Cinf, 
where Cv, Cvib, Cc1, Cinf — isochoric, vibrational, configuration distinct particles and infinite heat 
capacity of H2O liquid saturation respectively [21; 22]. 
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Fig. 1. Dependence on temperature (T, K) found by the equations (1) — (4) modeling masses (m) 
of particles of H2O liquid saturation for the energy levels of Einstein saturated quantum gas (m2) 

and thermal wavelength of particles (m4), at temperature of BEC occurrence (m11) 
and BEC — quantum gas equilibrium (m211, m411): (Cc2 — configuration heat capacity of identical particles 

(J/ (mol⋅K)) by data [22]; Ttrp — triple point temperature) 
 
The values of m11 decrease smoothly while the temperature increases, which can be noticed 

within m411(T) and m211(T) functions. These functions depend on the temperature less than m4 
and m2 do. In a temperature course of functions m411(T) and m211(T) the constancy of the mass 
ratio m411 / m211 = (m4 / m2)0.5 = (4π / 3)0.5 ≈ 2.04665 is also shown. In a wide temperature range 
the values of m211 are nearly equal to the proton mass (1mp), and values of m411 are nearly equal 
to the mass of proton pair (2mp) and m2. The temperature area, in which the values of m411 and m2 
are nearly equal to the proton pair mass, is more extensive in the m411(T) case than in the m2(T) 
case. At temperatures 239−240K of m211(T) and m411(T) functions have maximum. In this tem-
perature range the configuration heat capacity of identical particles (Cc2(T), see fig. 1) has a sharp 
maximum. In the field of temperatures 350-630K the Cc2(T) function becomes negative. In this 
temperature range m411 and m211 increase with the temperature. The greatest masses of m411 and 
m211 correspond to the critical temperature. 

 
Mass-spectra and configuration capacity of identical particles 

 
Features of functions m211 (T) and m411 (T) are used for interpretation of extreme in tem-

perature dependence of a configuration heat capacity of identical particles of H2O liquid satura-
tion Cc2(T). 
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The temperature range of 273-300 K 
 
There is a minimum of Cc2(T) function at the temperature of triple point of H2O water (see 

fig. 1). There is a maximum of Cc2(T) at 285K. Both extremes are poorly expressed and their 
presence is challenged because Cc2 values are derived based on a difference of large numbers. 
However, at an example when the pressure is 100 MPa and the temperature is 285 K there is a 
maximum in a temperature dependence of isochoric heat capacity Cv(T) [21]. The Cc2(T) function 
has an extreme on a line of a liquid saturation provides that the function Cc2(T) is more sensitive 
to changes of liquid properties, rather than an isochoric heat capacity temperature function Cv(T). 
This, therefore, can be the basis to consider H2O extremes for a discussion. 

The temperature of Cc2(T) maximum (285 K) practically coincides with the temperature 
(286 K), at which the value of m411 equals to the mass of proton pair. The mass of proton pair can 
be derived using a modeling system containing one cluster (2Н). It can also be derived based on 
the system containing two clusters (4Н; 4Н). It means, that the Cc2(T) maximum corresponds to 
modeling systems containing bosons. Transitions from even-even system (4H; 4H) to the nearest 
even-odd systems ((3H; 4H) or (4H; 5H)) result in an increase of the fermion content and in a de-
crease of configuration heat capacity of Cc2

 identical particles. Thus, the Cc2(T) maximum at the 
temperature of 285 K can be classified as a boson peak. The obtained result within the framework 
of the BEC-quantum gas equilibrium concept coincides with those, obtained on the basis of the 
analysis of frequencies of configuration vibrations in equilibrium of a quantum gas — condensate 
[22].  

At the temperature of 273.16 K, corresponding to the Cc2(T) minimum, the m211 value is 
greater than the mass of proton. According to the BEC-quantum gas equilibrium concept it is pos-
sible to explain the deviation of m211 from the proton mass at the temperature of the Cc2 mini-
mum. In considered temperature range m211(T) rises with the temperature decrease. The proton 
mass can be obtained based on (1H) and (2H; 2H) modeling systems. The last system (2H; 2H) is 
classified as even-even modeling system, which contains bosons. The presence of bosons causes 
the values of configuration heat capacity Cc2 to be positive (increased comparatively to the values 
at 273.16 K). The decrease of the heat capacity Cc2, observed at temperatures lower then 275 K is 
related to an increase of the fermion content in the modeling system. Indeed, it is possible to ob-
tain the mass exceeding the proton mass in an even-odd modeling system (2Н; 3Н). In such sys-
tem the fermion content is higher, than in (2H; 2H) system. The mass close to m211 = 1,01425 
corresponding to the Cc2(T) minimum can be obtained from various modeling systems. This char-
acterizes such modeling systems at 273.16K as variable. For example, modeling systems (2H; 
3H; 1HO; 1H4O; 1H4O), (2H; 3H; 1M; 1M; 2M; 3OH), and (2H; 3H; 1M; 1M; 2OH; 3M), where 
M ≡ H2O, correspond to masses 1.0143, 1.0146, and 1.0141. The variability testifies high prob-
ability of modeling system realization.  

 
The temperature range of 300−400 K 

 
The mass of m411 = 1,9459, corresponding to the m411(T) minimum at 329K, can be ob-

tained as given in the model system, in which the least cluster contains two or greater number of 
protons, which is in agreement with proton pairs in a H2O liquid found earlier [22]. In the range 
of 329K the Cc2 heat capacity is positive, therefore proton pairs could be used in the modeling of 
the minimal value (0,9508) of the m211(T) function. For example, the even-even (2H; 2H; 1OH) 
model system used in calculation of the mass of the proton H+ and OH- ion gives a value of 
0,951, which is close to the desired value. 
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When the temperature rises above 329K the mass of particles m211 and m411 increases and 
even-even system are giving way to even-odd model systems. This leads to an increase of fer-
mion clusters contribution to configurational heat capacity of identical particles Cc2 as well as its 
transition to negative values. Fermions, by definition, [6], interfere with a negative sign, which 
manifests itself in the configuration of the heat capacity of identical particles Cc2(T). The role of 
all clusters of the model system appears in the process of the Cc2 decrease. For example, at 350K 
the m411 = 1,957 value is modeled by the system (3H; 1O; 1HO; 1HO), which contains one bos-
onic cluster (1O) formed by O2- particles among three fermion clusters. At higher temperatures 
(361-362K) the m411 = 1,971 value is modeled by the fermionic system (3H; 1HO; 1HO; 1HO). 

 
The temperature range of 200−273 K 

 
High temperature (right) wing of the Cc2(T) maximum is observed at temperatures from 

239−240 K to 273,16 K. The mass of 1,2088698 corresponds to the model system (2H; 3H). This 
mass exceeds the maximum value of m211

 (1,19272), which corresponds to 239 K. In this regard, 
the m211 values of all of the temperatures of the right wing of the Cc2(T) maximum can be calcu-
lated as at the temperature of 273,16 K based on the even-odd system (2H; 3H). For example the 
mass of 1,1929, close to the value of m211 at the maximum Cc2(T), corresponds to the system (2H; 
3H; 5M). Even-odd (2H; 3H) systems are also suitable for describing the temperature dependence 
of the m211 in the left (low temperature) wing of the Cc2(T) maximum. However, (2H; 3H) sys-
tems can not explain the reasons for sharp Cc2(T) rise as it approaches the maximum in the con-
figurational heat capacity of identical particles. The problem can be solved by increasing hydro-
gen parity in the process of changing the composition of model systems. The even-odd system 
(2H; 3H) has to be consistently replaced with (2H; 4H) and (2H; 6H) even-even model systems as 
the temperature approaches the Cc2(T)maximum. At the Cc2(T) maximum the following systems 
can be realized (2H; 4H; 1O; 2O) and (2H; 6H; 1OH; 1OH; 1OH), which correspond to 1,1930 
and 1,1931 values. In the case of ethane the (2H; 4H) model was attributed to the number of criti-
cal systems [23]. In this case the (2H; 4H) system is also critical, since the next even-even (2H; 
6H) system corresponds to an equivalent (3H; 3H; 1OH; 1OH; 1OH) odd-odd model in which all 
clusters are fermionic. 

At large values of the inductive capacity of water, and at differences in the electronegativity 
of hydrogen and oxygen, all the clusters (3H; 3H; 1OH; 1OH; 1OH) in odd-odd model system are 
electrically charged particles ((3H)3+, OH-) and, accordingly, are fermions. The possibility of 
transition of model system containing predominantly boson clusters to the system of a fermionic 
structure is characteristic to liquid H2O. Further, it is one of the reasons for the formation of 
spiked maximums of configurational heat capacity of identical particles Cc2 (T) at 239−240 K. 
Boson-fermion contrasts reflect, for example, (2H; 4H; 1O; 2O) and (3H; 3H; 1OH; 1OH; 1OH) 
systems, which simulate the m211-mass values within Cc2(T) peak at 239−240 K temperatures. 

 
The temperature range of 400−620 K 

 
The shape of an extensive Cc2(T) minimum can be explained by the equilibrium BEC-

quantum gas concept in the temperature range of 400−620 K. From Fig. 1 it follows that the trend 
line of Cc2(T) function has a wave-like shape in these three segments of temperatures. A weak 
maximum, corresponding to 510−520 K temperatures, is surrounded by two nearly symmetrically 
located minima. The first of these is located at 460−470 K, and the second is in the temperature 
range of 560−570 K. 
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The m211(T) function at temperatures from 402 K to 484 K has the same values as at 275 K 
to 239−240K temperatures. Therefore, the m211(T) are modeled by (2H; 3H) even-odd systems. 
(2H; 3H; 1OH) and (2H; 3H; 1M) model systems, for example, correspond to m211(T) values in 
the temperature range of 460−470 K. In the temperature range of 484 K the Cc2(T) function in-
creases with higher temperatures. In this case, the mass m211 = 1,1927 is simulated by model sys-
tem with two equivalent forms (3H; 3H; 1OH; 1OH; 1OH) and (2H; 6H; 1OH; 1OH; 1OH). All 
the components of one system are classified as fermions. They are classified as bosons (2H; 6H) 
in another system. In the temperature range of 470−520 K the m211 mass can also be obtained by 
other containing bosons model systems. The implementation of (2H; 4H) even-even systems such 
as (2H; 4H; 1HO); (2H; 4H; 1M), (2H; 4H; 2O) and alike, contributes to the maximum of Cc2(T) 
in the temperature range of 510−520 K. A significant contribution to the formation of the Cc2(T) 
maximum is also made by (4H) systems. With further increase in temperature the contribution of 
even-odd model systems to m211 and m411 masses increases, which leads to some decrease in Cc2 
and the observation of a minimum of Cc2(T) at 560−570 K. Such factors as high variability of 
model systems, the possibility of smooth and continuous temperature change in the mass of parti-
cles in mass spectra of m211(T) and m411 (T), and dissociation of molecules into ions allow 
smoothing the boson-fermion variation of Cc2(T) on the H2O liquid saturation line in the tempera-
ture range of 400−620 K. 

 
The near-critical temperature region 

 
At the critical temperature (≈647,27K) the highest value m411 ≈ 9,8 is achieved. In order to 

model this number by using hydrogen clusters, they must contain at least 10 protons. In such 
model system (10H; 20M), along with 10-atomic resonances (10H), it is necessary to use the 20-
molecule (20M) Efimov resonance. To reduce the size of the second cluster it is necessary to in-
crease the mass of the first cluster. The m411 = 9,8 value can be modeled by, for example, (12H; 
3HO) system, in which the 12H cluster mass commensurate with 2/3 of the mass of water mole-
cules. If using only H2O molecules in the cluster, the model system will be (1M; 2M; 3M). It is 
known that the mass of the liquid particles increases at the critical temperature. However, in this 
case, the (3M) cluster is a classic three-body Efimov resonance, when the (2M) cluster has the 
resonance nature, formed by the coherent motion of particles. Bosonic nature of the molecules 
characterizes high meanings of configurational heat capacity as the boson peak. However, the 
configurational heat capacity of H2O is less than this of D2O [22]. This fact was attributed to the 
manifestation of fermions in the configurational heat capacity of identical particles of H2O. In-
deed, for example, at the critical temperature, the m211 (4,78) value can be simulated by systems 
containing, in addition to bosons, fermion clusters: (5H; 6O) = (10H; 10H; 6O), (1M; 1M; 1M; 
3O; 3O), (1HO; 1M; 1M; 3HO; 3HO). The possibility of representing m411 and m211 masses in the 
form of models of different composition characterizes model systems at critical temperature as a 
variable. The transformation of proton resonances to molecular resonances is one of the factors 
which reduces the scale of BEC manifestations in liquid H2O, as opposed to, for example, cold 
gases [24]. 

 
Mass spectra and the structure 

 
Features of m211(T) and m411(T) mass spectra are used for quantitative estimation of H2O 

liquid structure on the saturation line. Mass spectra contain resonances that are formed due to the 
coherent motion of identical particles of liquid. The de Broglie waves, related to the BEC-
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quantum gas equilibrium, propagate with the speed of sound (Cs). In this case, the de Broglie 
wavelength (λ) is comparable to the intermolecular and interatomic distances (d) of the liquid. 
The phenomenon of wave diffraction and interference can be used to study the liquid structure. 
To realize this possibility the particle mass (m) of de Broglie wave sources and receivers will be 
compared with m211 and m411 masses. 

To determine the mass of particles (m) the de Broglie wavelength λ = h / (m⋅Cs) is used in 
Bragg's law Equation 2⋅d⋅sin(α)= n⋅λ, where α is a slip angle, and n is the order of diffraction. In 
this case, the mass is dependent on the angle α: 

 
m = n ⋅ h / (2 d Cs Sin(α)).        (5) 

 
Diffracted waves interfere. In the calculations of fluctuation intensity (J, J1, J2) in accor-

dance with the interference: J = J1 + J2 + 2⋅(J1⋅J2)1/2⋅cos(Ф), where Ф — the difference of phase 
fluctuations, an additional angle (Ф) has to be considered. To account for possible angle varia-
tions (α and Ф) the structural features of liquids will be taken into account. In these liquids, 
unlike solids, the short-range order takes place, which undergoes temperature changes. In this re-
gard, «the composition» and structure of the first coordination sphere of the molecules we mainly 
taken into account. 

The molecules of the first coordination sphere of water H2O are divided [14, 20] into frac-
tions: f1 and f2 — for intermolecular distances 0,28 and 0,33 nm. Multiplication of fractions f1 
and f2 on the coordination number z gives the number of molecules of the first (n1) and the sec-
ond (n2) type in the first coordination sphere of water z = n1 + n2. 

It was found [5] that in a wide temperature range n1 remains constant and equal to the value 
(2,36), the reverse value is equal to the percolation threshold for the tetrahedral lattice sites (0,43 
[2, p. 436]). Since, by definition, the percolation threshold is n1 = z1 – 1, where z1 — a coordina-
tion number of molecules in lattice sites, then z1 = n1 + 1. By analogy, z2 = n2 + 1 is the coordina-
tion number of molecules in position 2 (in the «interstices»). The number z is the vector sum of z1 
and z2 [5], in contrast to the algebraic sum of z = n1 + n2. Thus, z, z1, and z2 form a vector trian-
gle. Parameters of the triangle associated with the composition and structure of the first coordina-
tion sphere. 

The vector triangle parameters will be used to describe the phenomena of diffraction and in-
terference of de Broglie waves. Let the straight line to coincide with the interatomic or intermo-
lecular distance d at the right angle of one side of the triangle. The intensity will be represented in 
mass units as the product of mass m in (5) and fractions. The indexes (0, 1, 2) will be used to de-
scribe fractions (f0 = f1 + f2; f1; f2) and angles (F0; F1; F2) at the opposite sides of z, z1 and z2. In-
dexes will be assigned to letters (i = 0; j = 1, k = 2). Angles (α and Ф) will be equated to corners 
of the vector triangle. The chosen succession let us to account for all the angles of the vector tri-
angle in each computation of the mass of particles involved in the phenomena of diffraction and 
interference of de Broglie waves. 

The result of interference described by equation (taking into account the summation of 
mass (m) to (5) and their reciprocals (m)-1):  

 
mijk = ((mi)b⋅fj + (mj)b⋅fi + (-1)c⋅2⋅((mi)b⋅fj⋅(mj)b⋅fi)1/ 2 ⋅Cos(Fk))b,   (6) 

where b can be +1 and –1; c — may be 1 and 2, the first and second indexes (mijk) — characterize 
the slip angle and the fraction in the first term, as well as the fraction and the slip angle in the 
second term. The third index characterizes phase (in the third term) of the right-hand side of the 
equation (6). After index permutation the first index transfers to the place of the third one. As a 
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result, equation (6) gives 12 meanings of the mass of particles, which are associated with de 
Broglie waves involved in the phenomena of diffraction and interference. 

Comparing computational results of the equation (6) with the results of equations (1) − (4) 
the distance d can be estimated. 

 
Mass spectra and intermolecular distances 

 
In this paper, based on the results obtained from (6) a geometric mean (mg.m.) of mass was 

found when b = +1, b = –1 and b = (+1 and –1) with a parameter c = 1; c = 2; c = (1 and 2). Such 
an averaging gives 15 masses (mg.m.) of particles. Configuration fluctuations of the fluid particles 
reduce the difference between fractions f1 and f2. In this paper f1 = f2 = 0,5 was accepted. Compu-
tational results of mg.m. involved in the diffraction and interference, was compared with the m211 
mass. Using this method, the distance d (nm) for H2O on the liquid saturation line was deter-
mined, which is shown in Fig. 2 as d(T) functions (lines 1−15). The effective radius of the mole-
cules (r) and various data in the literature [4, 14, 20, 25, 26] are also presented. 

From Fig. 2 it follows that most of the calculated d(T) functions (lines 1−15) are convex to 
the temperature axis (T, K). 

 

 
 

Fig. 2. Intermolecular distances (d, nm) of H2O on the saturation line of the liquid at temperatures (T, K) 
according to equation (6) calculations, when f1 = f2 = 0.5 and mg.m. = m211, (lines 1−15) and literature data: 

([G; N; P; Tu; X] — in [14, 20, 4, 25, 26]; r1, r2, rc, 2r1, 2r2, 2rc — radius and intermolecular distances of the 
first and second types of molecules and critical fluid; rOH, rOHg — the distance between the atoms of OH-liquid 

and H2O-gas; r — effective radius of the liquid molecules; Ttrp — triple-point temperature) 



ФИЗИКА 
 

 

 52

The lowest meanings of d(T) (lines 14−15) are in the region of interatomic distances of liq-
uid (rOH) and gas (rOHg). The greatest meanings of d(T) (lines 1−3) are located in the intermolecu-
lar distances of the first (2r1) and second (2r2) types of molecules. Lines 10−11 practically pos-
sess the same features of the temperature dependence of the molecular radius (r2) and (r1). An 
agreement of obtained d(T) distances was found for stable, supercooled and critical liquids. 

The angular characteristics (F (T)) of molecules and their relative position in the liquid can 
be estimated based on d(T) of, for example, adjacent lines. From these estimations it follows, that 
the angle of H2O gaseous molecules (104,52o) is the limit of the F(T) function at the critical tem-
perature. While, characteristic angles of tetrahedral (109,47o), hexagonal (120o), as well as the 
adjacent angle of pentagonal (108o) coordination appear as the F(T) function limit at low tem-
peratures only. 

From the analysis of the temperature dependence of the configurational heat capacity of 
identical particles Cc2(T) and intermolecular distances d(T), calculated on the basis of our pro-
posed concept of equilibrium BEC-quantum gas, it follows that within the properties and struc-
ture of H2O on the saturation line of liquid the Bose-Einstein condensate is manifested up to the 
critical temperature. In addition, such a manifestation is confirmed by the expression of classical 
(3-body) Efimov resonances and by resonances that contain a large number of particles (protons, 
H2O molecules). 
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