ФИЗИКА

Г. А. Бордовский, А. В. Марченко, А. В. Зайцева, А. В. Николаева

МЕХАНИЗМЫ ЭЛЕКТРОННОГО ОБМЕНА В ТВЕРДЫХ РАСТВОРАХ Аg_{1-X}Sn_{1+X}Se₂ и Ag_{1-X}Sn_{1+X}Te₂

Методом мессбауэровской спектроскопии на изотопе ¹¹⁹Sn показано, что в соединении переменного состава $Ag_{1-y}Sn_{1+y}Se_2$ реализуется состояние олова, отвечающее формально трехвалентному олову и возникающее в результате быстрого электронного обмена между ионами Sn^{2+} и Sn^{4+} , находящимися в узлах решетки типа NaCl. Для соединения $Ag_{1-y}Sn_{1+y}Te_2$ аналогичное состояние олова возникает в результате взаимодействия ионов Sn^{4+} с электронами зоны проводимости.

Ключевые слова: твердые растворы, электронный обмен, мессбауэровская спектроскопия.

G. Bordovskii, A. Marchenko, A. Zaitseva, A. Nikolaeva

MECHANISMS OF ELECTRONIC EXCHANGE IN SOLID SOLUTIONS Ag_{1-x}Sn_{1+x}Se₂ u Ag_{1-x}Sn_{1+x}Te₂

A ¹¹⁹Sn Mossbauer study of the $Ag_{1-y}Sn_{1+x}Se_2$ compound reveals a tin state which formally corresponds to trivalent tin and is produced as a result of a fast electron exchange between Sn^{2+} and Sn^{4+} ions occupying NaCI-type lattice sites. A similar tin state appears in $Ag_{1-y}Sn_{1+x}Te_2$ in the interaction of Sn^{4+} ions with conduction band electrons.

Keywords: solid solutions, electron exchange, Mössbauer spectroscopy.

Соединение переменного состава $Ag_{1-y}Sn_{1+y}Se_2$, имеющего структуру типа NaCl, является сверхпроводником с необычайно высоким значением критической температуры, не характерным для халькогенидов элементов IV группы [1]. Однако соединение $Ag_{1-y}Sn_{1+y}Te_2$, также кристаллизующееся в структуре типа NaCl, сверхпроводящими свойствами не обладает. Учитывая, что серебро в халькогенидах олова является одноэлектронным акцептором, можно предположить, что в тройных соединениях типа $Ag_{1-y}Sn_{1+y}X_2$ стабилизируется необычное состояние трехвалентного олова и различие в поведении этих со-

единений объясняется различием в поведении центров олова (например, различием в механизмах электронного обмена между центрами олова).

Соединения Ag₁Sn₁Se₂, Ag_{0.9}Sn_{1.1}Se₂, Ag_{0.8}Sn_{1.2}Se₂, AgSnTe₂, Ag_{0.85}Sn_{1.15}Te₂ и Ag_{0.73}Sn_{1.27}Te₂ синтезировали сплавлением серебра, олова и халькогена в вакуумированных кварцевых ампулах с последующей закалкой расплава в ледяную воду. Все синтезированные поликристаллические сплавы имели структуру типа NaCl. Для всех составов Ag_{1-v}Sn_{1+v}Se₂ температура сверхпроводящего фазового перехода составляла ~ 6 K.

Соединения Ag_{1-y}Sn_{1+y}Se₂

Мессбауэровские спектры ¹¹⁹Sn соединений Ag₁Sn₁Se₂, Ag_{0.9}Sn_{1.1}Se₂ и Ag_{0.8}Sn_{1.2}Se₂ представляют собой одиночные линии, характерные для атомов олова в кубической решетке (рис. 1). Мессбауэровские спектры Ag_{1-y}Sn_{1+y}Se₂ отвечают единственному состоянию олова, причем изомерный сдвиг этого спектра является промежуточным между изомерными сдвигами состояний Sn²⁺ и Sn⁴⁺ в решетке PbSe. Иными словами, в тройных соединениях Ag_{1-y}Sn_{1+y}Se₂ олово формально трехвалентно, причем изменение *y* в пределах от 0.0 до 0.2 сопровождается изменением изомерного сдвига мессбауэровского спектра (рис. 1).

Puc. 1. Мессбауэровские спектры ¹¹⁹Sn соединений Ag_{1-y}Sn_{1+y}Se₂ при 80 К

Для описания полученных результатов для соединений $Ag_{1-y}Sn_{1+y}Se_2$ мы использовали две модели.

1. Согласно ионной модели структурная формула соединения $Ag_{1-y}Sn_{1+y}Se_2$ может быть записана в виде $\left[Ag_{1-y}^+Sn_{\frac{1+3y}{2}}^{2+}Sn_{\frac{1-y}{2}}^{4+}Se^{2-}\right]$, причем в результате быстрого двухэлектронного обмена между центрами Sn^{2+} и Sn^{4+} возникает «усредненное» состояние Sn^{3+} . Изомерный сдвиг мессбауэровского спектра для такого состояния определяется соотношением

$$\delta = \frac{\delta_{Sn^{2+}} + \delta_{Sn^{4+}}}{2} + \frac{y \lfloor \delta_{Sn^{2+}} - \delta_{Sn^{4+}} \rfloor}{1 + y}, \tag{1}$$

где $\delta_{Sn^{2+}}, \delta_{Sn^{4+}}$ — изомерные сдвиги состояний Sn^{2+} и Sn^{4+} в структуре соединения $Ag_{1-y}Sn_{1+y}Se_2$.

2. Согласно зонной модели электронная структура соединения $Ag_{1-y}Sn_{1+y}Se_2$ может быть представлена в виде $[Ag_{1-y}^+Sn_{1+y}^{4+}Se^{2^+}+(1+3y)e]$, то есть ионы серебра и олова образуют остов, а электроны е заполняют зону проводимости. «Усредненное» состояние Sn^{3+} образуется в результате электронного обмена между ионами Sn^{4+} и зонными состояниями. Изомерный сдвиг мессбауэровского спектра такого состояния определяется соотношением

$$\delta = \delta(\operatorname{Sn}^{4+}) + 2\delta_{o} \frac{y}{1+y}, \qquad (2)$$

здесь $\delta(Sn^{4+})$ — вклад в изомерный сдвиг электронов остова иона Sn^{4+} , а при учете вклада электронов проводимости предполагается, что (1 + 3y) электронов проводимости распределены по (1 + y) узлам олова, δ_0 — вклад в изомерный сдвиг от одного электрона проводимости.

Соотношения (1) и (2) имеют вид

$$\delta = A + B \frac{y}{1+y}.$$
 (3)

В рамках ионной модели для оценки величин A и B значения $\delta_{Sn^{2+}}, \delta_{Sn^{4+}}$ были взяты 3.65 мм/с и 1.52 мм/с. В обоих соединениях (PbSe и Ag_{1-y}Sn_{1+y}Se₂) олово находится в октаэдрическом окружении ионов селена, и, следовательно, состояния олова Sn²⁺ и Sn⁴⁺ в решетке PbSe должны хорошо моделировать аналогичные состояния в решетке Ag_{1-y}Sn_{1+y}Se₂. Из рисунка 2 следует, что параметры A и B имеют значения: A = 2.69 ± 0.04 мм/с и B = 1.92 ± 0.14 мм/с, и эти значения находятся в согласии с величинами $\frac{\delta_{Sn^{2+}} + \delta_{Sn^{4+}}}{2} = 2.59 \pm 0.03$ мм/с и $\left[\delta_{Sn^{2+}} - \delta_{Sn^{4+}}\right] = 2.13 \pm 0.03$ мм/с, которые следуют из ионной модели.

Рис. 2. Зависимость изомерного сдвига мессбауэровских спектров ¹¹⁹Sn соединений $Ag_{1-y}Sn_{1+y}Se_2$ от параметра y/(1 + y). *1* — данные для $Ag_{1-y}Sn_{1+y}Se_2$, *2* — данные для PbSe

Для зонной модели невозможно оценить вклад в изомерный сдвиг электронов остова иона Sn^{4+} , тогда как оценка δ_0 дает значение ~ 0.17 мм/с и это приводит к значению B \approx 0.34 мм/с, что значительно меньше B = 1.94 мм/с, полученного из экспериментальной зависимости на рисунке 2.

Таким образом, только ионная модель дает количественное согласие с экспериментальными данными для соединения $Ag_{1-y}Sn_{1+y}Se_2$. Отметим, что отсутствие одноэлектронного обмена между центрами олова в структуре $Ag_{1-y}Sn_{1+y}Se_2$ подтверждается низким значением парамагнитной восприимчивости этого соединения ($\chi \sim 3.10^{-5}$ см³/моль).

Соединения Ag_{1-y}Sn_{1+y}Te₂

Мессбауэровские спектры ¹¹⁹Sn соединений AgSnTe₂, Ag_{0.85}Sn_{1.15}Te₂ и Ag_{0.73}Sn_{1.27}Te₂ представляют собой одиночные линии, характерные для атомов олова в кубической решетке (рис. 3), они отвечают единственному состоянию олова. Изомерные сдвиги этих спектров близки к изомерным сдвигам соединений Ag_{1-y}Sn_{1+y}Se₂ — то есть в тройных соединениях Ag_{1-y}Sn_{1+y}Te₂ олово формально трехвалентно.

Рис. 3. Мессбауэровские спектры 119 Sn соединений Ag_{1-v}Sn_{1+v}Te₂ при 80 К

Для описания полученных результатов мы использовали две вышеописанные зонную и ионную модели. На рисунке 4 показана зависимость изомерного сдвига мессбауэровского спектра ¹¹⁹Sn от состава твердых растворов $Ag_{1-y}Sn_{1+y}Te_2$. Наклон этой прямой существенно меньше, чем для $Ag_{1-y}Sn_{1+y}Se_2$, и соответствует B = 0.33 мм/с. Такое значение В явно противоречит ионной модели, но, с другой стороны, это значение В хорошо совпадает с оценкой, сделанной выше для зонной модели.

Соединение переменного состава $Ag_{1-y}Sn_{1+y}Se_2$ является сверхпроводником с необычайно высоким значением критической температуры, не характерным для халькогенидов элементов IV группы, тогда как соединение $Ag_{1-y}Sn_{1+y}Se_2$ сверхпроводящими свойствами не обладает. По-видимому, такое различие в поведении двух изоструктурных соединений объясняется различным механизмом электронного обмена, приводящего к необычному трехвалентному состоянию олова.

Рис. 4. Зависимость изомерного сдвига мессбауэровских спектров ¹¹⁹Sn соединений $Ag_{1-y}Sn_{1+y}Te_2$ от параметра у/(1+y)

СПИСОК ЛИТЕРАТУРЫ

Bordovsky G., Marchenko A., Seregin P. Mossbauer of Negative Centers in Semiconductors and Superconductors. Identification, Properties, and Applicaton // Academic Publishing GmbH & Co. 2012. 499 p.

Т. М. Борисова, Р. А. Кастро

ВЛИЯНИЕ РЕЖИМА СИНТЕЗА ОКСИДНОГО СЛОЯ НА ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СТРУКТУР Si/Al₂O₃/Al^{*}

Проведено исследование диэлектрических свойств МДП-структур Si/Al₂O₃/Al на основе слоев оксида алюминия, полученных методом молекулярного наслаивания. Измерены температурно-частотные зависимости действительной (є`) и мнимой (є``) составляющих комплексной диэлектрической проницаемости, тангенса угла диэлектрических потерь tgб (f) и проводимости (σ_{ac}) в области частот $f = 1 \cdot 10^{-1} - 1 \cdot 10^{6}$ Гц. Установлено, что в изученных структурах имеет место релаксационная дисперсия є` и є``. Показано, что диэлектрические потери в оксидном слое обусловлены релаксационной поляризацией и сквозной проводимостью. Обнаружено существование прыжкового механизма проводимости с частотной зависимостью типа $\sigma_{ac} \sim f^{0.85}$. Оценены параметры энергетического спектра локализованных состояний: радиус локализации $a = (3.66 \div 9.07)$ Å, плотность (N_F) и разброс (ΔE) этих состояний N_F = (8.34 ÷ 31.44)·10¹⁹ эB⁻¹·m⁻³, $\Delta E \sim (10^{-2} \pm 10^{-3})$ эB, среднее время (τ) и расстояние (r_0) прыжков $\tau = 1$ мкс и $r_0 = (75 \div 188)$ Å. Обнаруженные законометриости объясняются особенностями двух структур.

Ключевые слова: МДП-структура, оксидный слой, диэлектрические параметры.

^{*} Настоящая работа поддержана проектом № 50/12-ГЗП «Синтез и исследование электрофизических свойств новых наноструктурированных материалов, перспективных для использования в микро- и оптоэлектронике».