23. Yakovleva N. M., Anicai L., Yakovlev A. N., Dima L., Khanina E. Ya., Chupakhina E. A. Structure and Properties of Anodic Aluminum Oxide Films Produced in HNO<sub>3</sub> Solutions // Inorganic Materials. 2003. V. 39. N 1. P. 50–56.

24. *Pollak M.* Frequency dependence of conductivity in amorphous solids // Phil. Mag. 1971. V. 23. P. 519–542.

П. П. Серегин, А. С. Налетко, М. Ю. Кожокарь, Т. Ю. Рабчанова

## ПРИМЕСЬ ЖЕЛЕЗА В АМОРФНОМ ГИДРОГЕНИЗИРОВАННОМ КРЕМНИИ

Примесные атомы железа стабилизируются в структуре аморфного гидрогенизированного кремния a-Si(H) в виде электрически неактивных ассоциатов типа «железо — вакансия» и в виде электрически активных центров в узлах структурной сетки a-Si(H). Электрически активные центры железа образуют в щели подвижности a-Si(H) полосу акцепторного типа.

Ключевые слова: примесь железа, аморфный гидрогенизированный кремний.

P. Seregin, A. Naletko, M. Kozhokar, T. Rabchanova

#### IMPURITY OF IRON IN AMORPHOUS HYDROGENATED SILICON

The impurity iron atoms are stabilized in the structure of amorphous hydrogenated silicon a-Si(H) and in the form of electrically-active associates of the «iron — the vacancy» in the form of electrically of active centers in the nodes of the grid structure a-Si(H). Electrically active centers of iron form in the mobility gap a-Si(H) band of the acceptor-type.

Keywords: impurity of iron, amorphous hydrogenated silicon.

Проблема легирования аморфного гидрированного кремния a-Si(H) давно привлекает внимание исследователей. Одним из наиболее эффективных методов идентификации примесных атомов в a-Si(H) является мессбауэровская спектроскопия [1, 2]. В настоящей работе приводятся результаты по определению состояния примесных атомов железа и его влияния на электрические свойства a-Si(H) (железо — наиболее часто встречающаяся фоновая примесь в a-Si(H)).

## Методика эксперимента

Образцы *a*-Si(H) : Fe получали высокочастотным совместным распылением монокристаллической кремниевой мишени и мишени из металлического железа в газовой смеси гелия, аргона и силана. Температура подложки  $T_s$  была 250, 300 или 380°C. Концентрация железа рассчитывалась с учетом коэффициента распыления и площади железа на мозаичной мишени, контролировалась рентгенофлуоресцентным методом и составляла 0.1 ат%. Концентрация водорода контролировалась методом ИК-спектроскопии и составляла 15 ат%. Темновая проводимость и фотопроводимость  $\sigma_{\phi}$  определялись в планарной геометрии. Фотопроводимость измерялась при 295 К при освещении светом с интенсивно-

стью  $4.10^{17}$  фотон/см<sup>2</sup> с и длиной волны 0.65 мкм. Термоэдс *S* и положение края оптического поглощения  $E_0$  определялись при 295 К. Мессбауэровские спектры примесных атомов <sup>57</sup>Fe измерялись при 295 К с источниками <sup>57</sup>Co в палладии.

## Экспериментальные результаты

Для нелегированных пленок *a*-Si(H) температурная зависимость электропроводности в интервале температур 100–500 К описывалась как  $\sigma = \sigma_0 \exp(-E_{\sigma}/kT)$  с энергией активации  $E_{\sigma} = 0.58 \pm 0.02$  эВ для пленки, полученной при  $T_s = 380^{\circ}$ С, и  $E_{\sigma} = 0.70 \pm 0.02$  эВ для пленки, полученной при температурах подложки 250°С и 300°С.

Температурные зависимости темновой проводимости *a*-Si(H), легированного железом, приведены на рисунке 1 для трех температур подложки ( $T_s = 250, 300$  и 380°C). Как и в случае специально нелегированного *a*-Si(H), в координатах  $ln\sigma - 1/T$  проводимость описывается линейной зависимостью. Параметры электропроводности сведены в таблице 1. Видно, что эффект легирования пленок *a*-Si(H) проявляется лишь при температуре подложки 380°C (отметим, что при более высоких температурах подложки наблюдается частичная кристаллизация пленок).



*Puc. 1.* Температурные зависимости электропроводности пленок *a*-Si(H) + 0.1 ат.% Fe, полученных при разных температурах подложки

Таблица 1

| $E \rightarrow R$ | $\sigma  \Omega M^{-1} c M^{-1}$ | $\sigma_{205K} O M^{-1} C M^{-1}$ | $\sigma_{1}/\sigma_{1}$ | F |
|-------------------|----------------------------------|-----------------------------------|-------------------------|---|

Электрофизические параметры пленок *a*-Si(H) + 0.1 ат.% Fe

| $T_{s}, C$ | Е <sub>о</sub> , эВ | $\sigma_o, OM^{-1}CM^{-1}$ | $\sigma_{295K}, Om^{-}cm^{-}$ | $\sigma_{\phi}/\sigma_m$ | Е, эВ |
|------------|---------------------|----------------------------|-------------------------------|--------------------------|-------|
| 380        | 0.80                | 320                        | 2.10 <sup>-11</sup>           | $10^{2}$                 | 1.69  |
| 300        | 0.69                | 90                         | 1.10 <sup>-10</sup>           | $5.10^{2}$               | 1.68  |
| 250        | 0.69                | 200                        | 2.10 <sup>-10</sup>           | $5.10^{2}$               | 1.68  |
|            |                     |                            |                               |                          |       |

Примечание:  $T_s$  — температура подложки,  $E_{\sigma}$  — энергия активации электропроводности,  $\sigma_o$  — предэкспоненциальный множитель,  $\sigma_{295K}$  — проводимость при 295 К,  $\sigma_{\phi}/\sigma_m$  — отношение фотопроводимости к темновой проводимости,  $E_o$  — оптическая ширина запрещенной зоны.

Знак коэффициента термоэдс и абсолютное значение термоэдс при 295 К не зависит от легирования (образцы обладают электронным характером проводимости). Не зависит от легирования и оптическая ширина запрещенной зоны (см. табл. 1), хотя для спектра края оптического поглощения в области длинных волн наблюдается заметное увеличение поглощения (по сравнению со специально нелегированным *a*-Si(H)) (см. рис. 2).



*Рис. 2.* Край оптического поглощения при 295 К пленок *a*-Si(H) и *a*-Si(H) + 0.1 ат.% Fe, полученных при температуре подложки 380°C

Введение железа в *a*-Si(H) приводит к изменению характера зависимостей  $\sigma_{295K}$ ,  $\sigma_0$  и  $E_{\sigma}$  от  $T_s$  (см. табл. 1). Особенно сильно эффект легирования проявляется для пленок, полученных при  $T_s = 380$ °C. Легирование *a*-Si(H) железом приводит к резкому уменьшению фотопроводимости и уменьшению интенсивности спектров фотолюминесценции (рис. 3). Существенно, что легирование сопровождается возрастанием относительной интенсивности в спектре фотолюминесценции полосы при 1.35 мкм (см. рис. 3).



*Рис. 3.* Спектры фотолюминесценции при 77 К пленок *a*-Si(H) и *a*-Si(H) + 0.1 ат.% Fe, полученных при температуре подложки 380°C

Мессбауэровские спектры примесных атомов Fe в *a*-Si(H) приведены на рисунке 4, а результаты их обработки сведены в таблице 2. Видно, что тонкая структура мессбауэровских спектров зависит от температуры подложки: для образцов, полученных при  $T_s = 250^{\circ}$ С, спектры представляют собой квадрупольные дублеты, отвечающие Fe<sup>3+</sup>. Для образцов, полученных при  $T_s = 300^{\circ}$ С, в спектрах появляется состояние Fe<sup>2+</sup>, и наконец, для образцов, полученных при  $T_s = 380^{\circ}$ С, появляется состояние Fe<sup>3+</sup>.



*Рис. 4.* Мессбауэровские спектры при 297 К примесных атомов <sup>57</sup>Fe в пленках *a*-Si(H) + 0.1 ат.% Fe, полученных при различных температурах подложки

Таблица 2

Параметры мессбауэровских спектров примесных атомов <sup>57</sup>Fe в *a*-Si(H)

| Параметры спектров | Центры [Fe <sup>3+</sup> +V] | Центры Fe <sup>2+</sup> | Центры Fe <sup>3+</sup> |
|--------------------|------------------------------|-------------------------|-------------------------|
| IS, мм/с           | $0.21 \pm 0.02$              | $1.20 \pm 0.03$         | $0.33 \pm 0.02$         |
| QS, мм/с           | $0.32 \pm 0.02$              |                         |                         |
| G, мм/с            | $0.30 \pm 0.02$              | $0.30 \pm 0.02$         | $0.31 \pm 0.02$         |

# Обсуждение результатов

Поскольку для образцов *a*-Si(H) + Fe температурные зависимости электропроводности в полулогарифмической шкале координат  $\ln \sigma$  — T<sup>-1</sup> являются линейными, то можно заключить, что, как и в нелегированных пленках *a*-Si(H), проводимость осуществляется по делокализованным состояниям зоны проводимости (в том температурном интервале, в котором проводились измерения проводимости). Сравнение параметров проводимости нелегированных и легированных железом пленок показывает, что железо влияет на эти параметры только при  $T_s = 380^{\circ}$ C.

Поскольку знак коэффициента термоэдс и величина оптической ширины запрещенной зоны ( $E_o = 1.70 \pm 0.02$  эВ) не зависят от легирования, можно сделать вывод о сдвиге уровня Ферми в легированных образцах ( $T_s = 380^{\circ}$ С) к середине зазора подвижности (в нелегированном *a*-Si(H)  $E_c - F = 0.58$  эВ, в легированном материале  $E_c - F = 0.80$  эВ).

Анализ литературных данных [1] показывает, что квадрупольный дублет  $Fe^{3+}$  в спектрах отвечает ассоциатам примесных атомов железа с вакансиями V в первой координационной сфере. Поскольку при  $T_s = 250^{\circ}$ C все атомы железа находятся в таких ассоциатах и одновременно в этих образцах железо не влияет на проводимость материала, то можно заключить, что указанные ассоциаты электрически неактивны в структуре пленок *a*-Si(H). Трехвалентное железо организует в структуре *a*-Si(H) химические связи только с тремя ближайшими атомами кремния, и в результате образуется ассоциат [Fe<sup>3+</sup> – V].

Для пленок *a*-Si(H) + Fe, полученных при  $T_s = 380^{\circ}$ C, в мессбауэровском спектре наряду с ассоциатами [Fe<sup>3+</sup> – V] наблюдается состояние Fe<sup>3+</sup>, которое следует рассматривать как нейтральные акцепторные центры железа. Отметим, что в образцах, полученных при  $T_s = 300^{\circ}$ C, наблюдается как нейтральное (Fe<sup>3+</sup>), так и ионизованное (Fe<sup>2+</sup>) состояние акцепторного центра железа. Появление центров Fe<sup>3+</sup> в последнем случае объясняется тем, что процесс легирования при низкой температуре сопровождается образованием дополнительных электрически активных центров структурной сетки аморфного материала, которые и приводят к ионизации центров железа. Иными словами, наряду с влиянием электрически активных центров железа в данном случае проявляются и эффекты модифицирования структуры *a*-Si(H).

Таким образом, уровень Ферми в образцах a-Si(H) + Fe (T<sub>s</sub> = 380°C) оказывается привязанным к акцепторной полосе железа  $E_{Fe}$ , а значение  $E_{\sigma} = 0.80$  эВ указывает на положение этой полосы относительно дна зоны проводимости  $E_c$ . Естественно, эта величина является только верхней оценкой для  $E_c - E_{Fe}$ , так как центры железа в этих образцах преимущественно находятся в нейтральном состоянии и уровень Ферми зафиксирован в нижней части этой полосы. Для образцов a-Si(H) + Fe (T<sub>s</sub> = 300°C) положение уровня Ферми контролируется как примесными центрами железа, так и плотностью состояний, возникающей как следствие эффектов модификации структуры аморфного материала.

Электрически неактивные ассоциаты  $[Fe^{3+} - V]$  могут служить эффективными центрами рассеяния носителей заряда, за счет чего понижается проводимость легированных пленок *a*-Si(H) + Fe (T<sub>s</sub> = 250 и 300°C). Эти же центры являются и эффективными центрами безызлучательной рекомбинации, уменьшающими фотопроводимость и фотолюминесценцию легированного железом аморфного материала.

Заметное возрастание поглощения света в длинноволновой области типично для легированного *a*-Si(H) и объясняется введением в процессе легирования дополнительных дефектов структуры. В пользу этого свидетельствует и возрастание в спектре фотолюминесценции полосы 1.35 мкм.

#### Заключение

Примесные атомы железа стабилизируются в структуре аморфного гидрогенизированного кремния *a*-Si(H) в виде ассоциатов типа «железо — вакансия» и в виде центров в узлах структурной сетки *a*-Si(H). Продемонстрировано, что эффективное легирование аморфного гидрогенизированного кремния железом наблюдается только при температуре подложки 380°C, причем за электрическую активность железа ответственны центры железа в узлах структурной сетки *a*-Si(H), которые образуют в щели подвижности *a*-Si(H) полосу акцепторного типа. Уровень Ферми в легированных железом образцах привязан к акцепторной полосе железа, а значение энергии активации электропроводности легированных образцов  $E_{\sigma}$ = 0.80 эВ указывает на положение этой полосы относительно дна зоны проводимости.

## СПИСОК ЛИТЕРАТУРЫ

1. Bordovsky G., Marchenko A., Seregin P. Mossbauer of Negative Centers in Semiconductors and Superconductors. Identification, Properties, and Applicaton. Academic Publishing GmbH & Co. 2012.

2. Bordovsky G. A., Nemov S. A., Marchenko A. V., Seregin P. P. Mossbauer Studies of Two Electron Centers with Negative Correlation Energy in Crystalline and Amorphous Semiconductors // Semiconductors. 2012. V. 46. N 1. P. 1–21.

Е. И. Бобрицкая, Е. С. Кубракова, Д. Э. Темнов, Е. Е. Фомичева

# ПРОЦЕССЫ ЭЛЕКТРИЧЕСКОЙ РЕЛАКСАЦИИ В ПЛЕНКАХ ХИТОЗАНА С МИНЕРАЛЬНЫМИ НАНОРАЗМЕРНЫМИ ВКЛЮЧЕНИЯМИ<sup>\*</sup>

Исследованы полимерные пленки на основе хитозана с наноразмерными включениями хризотила (5%) и монтмориллонита (5%) методами диэлектрической и термоактивационной спектроскопии. В диапазоне температур 0–150°С обнаружены два релаксационных процесса: широкий α-пик в области 120 °С и β-пик в области 20 °С, интенсивность которого существенно уменьшается при введении в полимер наполнителя. Показано, что проводимость биополимера уменьшается при введении наполнителя. Рассчитаны энергии активации релаксационных процессов.

Ключевые слова: биополимеры, диэлектрическая релаксация, хитозан, удельная проводимость.

E. Bobritskaya, E. Kubrakova, D. Temnov, E. Fomicheva

## ELECTRICAL RELAXATION IN CHITOSAN FILMS WITH MINERAL NANODIMENSIONAL INCLUSIONS

Dielectric spectra of pure chitosan films and chitosan films with different fillers were obtained. Two relaxation processes in 200–500 K temperature intervals were observed: a wide  $\beta$ -peak in the region of 290 K and a-peak in the region of 390 K. The first peak due to the presence of the polymer-bound water and/or acetic acid disappears when filler injected into the polymer. It is shown that the conductivity of biopolymer decreases with adding filler particles.

Keywords: biopolymers, dielectric relaxation, chitosan, conductivity of polymers.

<sup>&</sup>lt;sup>\*</sup> Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглашение 14.В37.21.0242 «Неравновесные явления в конденсированных средах, наноструктурах и нанокомпозитах», проекта № 2.4.1 Программы стратегического развития РГПУ им. А. И. Герцена, проекта 46/12-ГЗП «Исследование электретного состояния в биоразлагаемых и биосовместимых полимерах».