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K. Gridnev, V. Danilenko, A. Kondratyev

Quasiparticles, Spectral Functions, and Kinetic Equation
in Quantum Fermi Liquid Theory

Green’s function method in Kadanoff-Baym version is used to analyze different ways of
determining of quasiparticle energies in a normal quantum system of interacting fermions and
to derive equations which determine these energies. The appearing differences for the micro-
scopic and phenomenological approaches to the Fermi liquid theory are discussed. The validity
of the Landau-Silin kinetic equation for the quasiparticle distribution function at finite tempera-
ture is proved on the basis of a proper approximation to the spectral function.

Keywords: Fermi liquid, Green’s function, spectral function, quasiparticle, kinetic equa-
tion.
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K. A. I'puones, B. A. /lanunenko, A. C. Konopamwes

KBASUYACTHIIbI, CHEKTPAJIBHBIE ®YHKIIMA 1 KHHETHYECKOE
YPABHEHHUE B TEOPUU KBAHTOBOU ®EPMU-KNIKOCTH

C nomowpio memooa gyuxyuti I puna 6 éapuanme Kaoanosa u betima ananuzupyromcs
Pa3IuuHble CnocoObl OnpedeneHus Kea3uidcmuy 6 HOPMAIbHOU K8AHMOBOU cucmeme 63aumo-
Oeticmeyouux hepMuoHos u 8bl800SIMCsL YpasHeHus 015 onpedenenus ux suepeutl. Oocyicoa-
HOMCs BO3HUKAIOWUE PA3IUYUSL NPU MUKPOCKONUYECKOM U (PeHOMEHON02UHECKOM N00X00ax K
meopuu pepmu-scuokocmu. Ha ocnose ucnonvsosanus npaguibHo2o npubaudicerus: 0 CHeK-
MPAIbHOU PYHKYUU YCMAHABTIUBAEMCS CRPABEOIUBOCHIb KUHEMUYECK020 YypaeHeHus Jlanoay —
Cununa 015 ynKyuu pacnpedeienus Keazuuacmuy npu KOHEeYHoOU memnepamype.

KuioueBsble c1ioBa: GepMU-KUAKOCTh, QyHKUMSA ['prHa, ciekTpaibHas QyHKIHS, KBa3u-
4acTHUIla, KHHETUYECKOE YPaBHEHUE.

1. Introduction

The exclusive successfulness of the phenomenological Landau — Silin theory of normal
Fermi liquids in predicting and describing a set of new phenomena, among them the zero sound
in *He and spin waves in non-ferromagnetic metals, made this theory a subject of investigation
on the basis of the fundamental microscopic theory [14]. The most general approach to the prob-
lem is based on the real-time Green’s-function formalism of Martin and Schwinger, further de-
veloped by Kadanoff and Baym [5]. This method is capable of describing in a comprehensive
way the equilibrium and non-equilibrium properties of many-body systems at zero and finite
temperatures. The Kadanoff-Baym (KB) equations were used in several contributions to this
evolving field with applications to nuclear matter [9], to one- and two-band semiconductors [16],
to plasma oscillations in an electron gas [11], to kinetic equations for quasiparticles in the case of
quickly varying in space and time disturbances [10], etc.

In its original form phenomenological normal Fermi liquid theory deals only with the varia-
tions of quasiparticle energies, but not with the energies themselves. But in a series of publica-
tions devoted to the magnetic properties of 3d-metals [6] and to the binding energy of nuclear
matter [8] the conception of quasiparticles in the spirit of Fermi liquid theory was used and dif-
ferent model expressions for the quasiparticle energies were offered. The results of numerical cal-
culations based on the developed in [6; 8] theories proved to be in a good agreement with the cor-
responding experimental data despite the fact that the widths of the energy levels were not con-
sidered small as it is assumed in the ordinary phenomenological Fermi liquid theory and in the
original microscopic approach to the Fermi liquid theory [5].

The purpose of this paper is to analyze on the basis of the KB theory various approaches to
the definition of quasiparticles in a Fermi liquid, to prove the validity or the model expressions
for the quasiparticle energies used in [6; 8], and to prove the validity of the offered in [1] ap-
proximation to the spectral function that takes into account the widths of the energy levels. This
demands a detailed analysis of the properties of spectral functions of one-particle states in a
many-body system. Finally, we will prove the validity of the Landau-Silin (LS) kinetic equation
[14] for the quasiparticle distribution function in the case of finite widths of the energy levels for
different ways of introduction of quasiparticles in a normal Fermi liquid.

2. Main formulas of the Kadanoff-Baym theory

The KB formalism leads to the following general expression for the one-particle spectral
function a (p,w) of a system in equilibrium [5]:
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o r(p.0)
) ) T ()4 M

where

e(p,w)=E™ (p)+Re Y (p,w) ()
and E""(p) is a one-particle energy in the Hartree-Fock approximation. Real and imaginary
(I'(p,w)) parts of the correlation self-energy function Zc( p,o) are related to each other
through the Hilbert transform:

ReZc(ﬁ,thIdw [p.o) 3)

2r w-w

Here P refers to a principal value integratlon.
The spectral function (1) satisfies the exact sum rule

Tdw .
J a(p,w)=1. 4)
27
In the case of slowly varying in space and time disturbances, after the transition to the
Wigner coordinates

R=(FE+7)/2, F=i-F, T=(@t+t)/2, t=t—t )

and the performance of the Fourier transform with respect to and, all the quantities ntering the
theory are considered to be the functions of p, ®, R,T.For example,
a=a(pw;RT).

If we take into account only the first derivatives with respect to slowly varying quantities
R,and T in the KB equations for the correlation functions, we come to the following equation

for the spectral function a(p w; RT):

[0 e(parRT).a(p & RT)|+[Reg(p @: RT).T (5 w:RT)] =0, (6)
and to the generalized KB kinetic equation for the correlation function g*(p w;RT)

|@-e(parRT).g"(parRT) [+ Reg(p:RT). 3, “(P@:RT) |=(}“¢" -3, "¢") (parRT).  (7)

Here [A4, B] is the generalized Poisson bracket defined by the expression [5]:

[A,B 0A OB 04 0B 04 GB 04 OB

ane A em a2 8
0w 0T 0T éw 0p OR 8R 8p ®

[I—

and E”" and Re zc include the interaction with the external field. The exact solution of Eq. (6)

is given by the expression [5]:

g(pzRT)=(z—E" (5:RT)-Re Y (5zRT)) . 9)

18



Quasiparticles, Spectral Functions, and Kinetic Equation in Quantum Fermi Liquid Theory

In fact, the solution (9) results in almost the same evaluation of the spectral function
a(pw;RT) as in the equilibrium state:

T'(pw;RT)
(w—e(po;RT)) +T*(pw;RT)/ 4

Equation (7) provides an exact description of the response to slowly varying disturbance.
All the quantities appearing in this equation may be expressed in terms of correlation and self-
energy functions.

The result (10) means that in the case of slowly varying disturbances the approximations
for the nonequilibrium spectral function may be written in the same form as in the equilibrium
case.

3. Quasiparticles in a normal Fermi liquid

In the KB formalism for a system in equilibrium the quasiparticle energy E = E(p) is de-
fined as a solution of the equation [5]:

a(pw;RT) = (10)

E(p)=e(p.o),,, - (11)

Now we expand e(p,w) as a function of @ in Taylor series near the value E(p) and save
only linear terms:

o)y E(p). (12)

0=E(p)
We substitute (12) into Eq. (1) and get the formula for a,, called the spectral function of

e(p,w)=E(p)+

the quasiparticle state:

Z’T(p,E(p))

agp (P, @) = = S (13)
QP (0= E(p))’ +Z°T*(p. E(P)) /4
where Z = Z(p) is a renormalizing factor defined by the expression
LA 021)] B (14)

00 lopip)
It is easy to prove that Z <1 for all values of p when correlation energy Z . 1s taken into

account [5]. The quantity y = ZT" can be considered the width of the quasiparticle state, and Eq.
(13) for the spectral function may be rewritten as

- _ V4
Yo Do) = G+ A (>

A severe drawback with a, is that it normalizes to Z rather than to 1 as in Eq. (4):

]3 dw
s 2r
If we neglect the width of the quasiparticle state y — 0, Eq. (15) reads:

app (Pr0)=Z <1. (16)
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agp (P, @) =2nZ6(w—E (p)) (17)
with the same normalization determined by Eq. (16).
We will consider a system at zero temperature with a spherical Fermi-surface and will use a
separable form for the widths of the energy levels:

L(p,0) = a(p)/|o— 4. (18)

Such parameterization of the energy level’s width allows to describe many realistic features
of quantum many-body systems [15]. The model expression (18) provides the convergence of the
integral in the Hilbert transform (3). The quantity x# in Eq. (18) is a chemical potential of a sys-

tem under consideration. In this case Eq. (11) for the quasiparticle energy E with a help of Egs.
(2) and (3) may be written in the form:

EHF<p>+a<p)j ﬂV _”. (19)

The integral / in Eq. (19) may be evaluated with a help of the residue method or after some
transformations may be represented as

T G (E- /J)
and may be evaluated with a help of the formula [4].

=—ctg—, m<n, (21)

where m and n are rational numbers. Finally we come to the following equation for the quasipar-
ticle energy E(p):

E(p)=E" (p)+a(p)|E(p) - p|sen(E(p) - w), (22)
which determines the values of the energies of quasiparticles (E(p)— u >0) and quasiholes

(E(p)— 1 <0). In normal Fermi liquids at zero temperature the energy of a quasiparticle on the

Fermi level equals the energy in the Hartree-Fock approximation and the damping of the energy
levels is absent [5].

Quasiparticle energy can be defined in a way different from Eq. (11). For example, we may
introduce a quasiparticle energy E, = E,(p) as a solution of the equation

o4

E =E™(p)+a(p) j D2

(23)

In accordance with Eq. (12), we use the approximation
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PO (B (). (24)

o=E(p)

e(p,w)=E(p)+

In this approximation we get the equation (23) for E,(p) in the form

tdw |60—/U|
E, :EHF(P)+Zla(p)IEm, (25)
—o0 1

where the renormalizing factor Z, = Z,(p) is defined by the expression

271 — 1_ ae(ﬁ’a))

| . (26)

w=E(p)

Comparing the expressions (19) and (25) it is easy to see that the equation (25) for E, dif-
fers from Eq. (22) for E only by the factor Z, before the second term in the right side of Eq.
(22):

E(p)=E" (p)+Za(p)|E (p)- 1 sgn(E,(p) - ). (27)

Egs. (22) and (25) mean that in the case of the separable model (18) for the widths of the
energy levels quasiparticle energy may be represented as a renormalized one-particle energy in

the Hartree-Fock approximation. The energy E,(p) is closer to the value of E”"(p) than E(p) ,

but it makes no difference for the phenomenological theory when renormalization is described in
terms of some phenomenological parameters. In the case of a microscopic theory of a Fermi lig-
uid the difference in the definitions of quasiparticle energies can be essential. Square root in Eq.
(18) may be changed for some other expression providing the convergence of the integral in the
Hilbert transform (3), but in this case probably it will be impossible to find solutions of the equa-
tions for the quasiparticle energy in an analytic form.

4. Spectral function and kinetic equation

Different approximations to the spectral function (1) linear in the energy level width T’
were considered in the series of publications [7; 13; 17] in order to describe realistic features of
quantum system of interacting particles in equilibrium and nonequilibrium states.. One of the
goals was to prove the validity of the LS kinetic equation for a normal Fermi liquid at finite tem-
perature. All approximations offered in [7; 13; 17] and in some other publications don’t satisfy
Eq. (6) and thus they are not adequate for a proper description of nonequilibrium phenomena. In
particular, all these works failed to prove the validity of the Landau-Silin equation at finite tem-
perature in a lawful mathematical way. It also means that the approximations to the spectral func-
tion offered in [7; 13; 17] are not adequate for a description of equilibrium phenomena due to ge-
netic links between the expressions (1) and (10).

The approximation that satisfies Eq. (6) was offered in [1]:

5. ) = _E(3)+ 2P P2)
a, (p,w)=2rZ6(w E(p))+ZP(a)—E([9))2' (28)
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The validity of the (LS) kinetic equation was proved in [5] on the basis of microscopic the-
ory only for zero temperature. The necessity to prove its validity at finite temperature was deter-
mined by the experimental discovery of superfluid transition in *He at a temperature lower than
the temperature at which the phenomena predicted and described by the normal Fermi liquid the-
ory were observed. The approximation (28) for the spectral function is the basis of such a proof
with the precision to the linear in I terms.

The approximation (28) can be obtained on the basis of the following relation of the Fou-
rier transform theory [1]:
° r , r
i drexp(-— |¢]) explirx) = >0 (29)

The expansion of the first exponent in the left side of (29) in Taylor series in powers of I'

with the subsequent term- by-term integration with a help of the formulas for the Fourier trans-

forms of powers of |t| [3] allow to generalize the results of [1] and to get the expansion of the

spectral function a (p,®) in powers of I". It can be proved that the sum of the terms with odd

powers of I' gives the complete expression (1) for the spectral function. The series of the terms
with odd powers of I' may be useful for the evaluation of different equilibrium properties of a
Fermi liquid.

Each term with even power of the width of the energy level in this expansion contains a
Dirac delta function. The sum of the terms with even powers of I' can be represented in the form:

. (w—e(p,m))’ e
Ay, (P, 0) =270 (@—p.o) +T° ([7,0))/45(0) e(p, w)). (30)

Due to the presence of delta function in the numerator it is obvious that the contributions of
each term and of the whole sum (30) of the terms with even powers of I' to the sum rule (4) and
to all formulas for different physical properties of a Fermi liquid equals zero. These statements
generalize the results obtained in (9).

Main problems in deriving the LS kinetic equation at finite temperature are associated
with the necessity of the elimination of the second Poisson bracket in the left side of Eq. (7) in a
mathematically lawful way. The reason of the failure of the attempts of such elimination in
[13,17] was the usage of improper approximations to the spectral function. A special name “puz-
zling term” for the second Poisson brackets in Egs. (6) and (7) was offered in [17] after such use-
less attempts. The proof of the validity of the LS kinetic equation may be produced in the follow-
ing way. The first term in the expression (28) for the spectral function after the substitution to the
first Poisson bracket in Eq. (7) leads to the LS kinetic equation [1]:

Cn (O on OE on_, Gh

where n is the quasiparticle distribution function:

n(p;RT) = f (p@;RT)| (32)

—E(B;RT)

The second term in the expression (28) after the substitution to the first Poisson bracket in
Eq. (7) cancels the “puzzling term” with the second Poisson bracket in this equation after the sub-
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stitution of the expression (9) written with the precision to the linear in I terms. Right in the
same way it may be proved that the approximation (28) satisfies Eq. (6).

5. Conclusions

Fermi liquid theory, and more generally, a concept of quasiparticles, stands out as one of
the high points of modern theoretical physics, a theory whose profundity goes beyond mere phe-
nomenology [2; 12]. The major emphasis in the investigations in this field is on the practical de-
velopment and application of the theory and on the description of its microscopic derivation.
There is no way of knowing a priory whether or not a given system of fermions is a normal Fermi
liquid; the only way to decide this is to measure the properties of the system experimentally and
see if the results are consistent with the predictions of the theory. The results of our work allow to
make the following conclusions.

The quasiparticle energy, at least in the case of separable models for a width of energy lev-
els may be represented as a renormalized energy in the Hartree-Fock approximation. This proves
the validity of the model expressions for the quasiparticle energies used in [6; 8] and explains the
agreement of the produced there numerical calculations with the experimental data.

Different ways of the definition of quasiparticles may be essential only in the frame of mi-
croscopic approach to a Fermi liquid theory, but they lead to the same expressions for the spectral
functions, and as a consequence, to the same form of the phenomenological theory.

The Landau-Silin kinetic equation for a normal Fermi liquid is valid at finite temperature
with the precision to the linear terms in the width of one-particle energy levels. Due to the re-
marks after the formula (30) it can be considered that the LS kinetic equation is valid at finite
temperature with the precision to the quadratic terms in the width of one-particle energies.
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A. B. JIanuyes

CUMMETPHUA PETYJIAPHBIX U XAOTUYECKHUX JIBUKEHUI
B 3AJAYAX HEJIMHEUHOU IUHAMMUWKU. YPABHEHUE JY®PUHIA

IIpeonooicen memoo Uccie008anUst CUMMEMPUU PESYTISIPDHBIX U XAOMUYECKUX OBUINCEHUL 8
3a0auax HenuHeuHol Ounamuxu. Ilpu pe2yiapupix 08UNCEHUSX UCCIeOYemcs CUMMempus haszo-
60l mpaexmopuu cucmemvl. Tlpu xaomuueckux 0BUINCECHUAX CUMMEMPU UCCLedyemcst npu no-
mowu cevenuti Ilyanxape. Ilokazano, umo 018 HEIUHEUHO20 OCYULIAMOPA, ONUCHIBAEMO20
ypasHeruem ygguHea, epynna cummempuu ypasHeHUull 8 3a8UCUMOCTY OM NApaMempo8 U3o-
MOp@Ha paznuunbim moyeynvim epynnam. Ipu smom cummempust peuteHutl Modxcem Ovlmv ma-
KOU dice, KaK CUMMemPUsi UCXOOHOU SPYNnvl UTU HAPYWAMbCS 8 3a8UCUMOCTUL OM NAPaMempo8
3adauu.

KuroueBble cjioBa: HeMMHENHas AWHAMHKa, JMHaMHUYeCKH Xaoc, cedeHus llyankape,
CTpaHHBI{ aTTPaKTop.

A. Liaptsev

The Symmetry of Regular and Chaotic Motions in Nonlinear Dynamic Problems.
Duffing Equation.

A method of investigation of symmetry of vegular and chaotic motions in nonlinear dy-
namic problems is suggested. The symmetry of regular motions is investigated by means of
analysis of phase trajectory. The symmetry of chaotic motions is investigated by means of
analysis of Poincare cross-sections. It is shown that for a nonlinear oscillator described by
Duffing equation, group symmetry of the equations depending on a parameter is isomorphic to
a variety of point groups. At the same time the symmetry of the solutions might be the same as
the symmetry of the initial group or violated depending on the parameters of the problem.

Keywords: nonlinear dynamics, dynamic chaos, the Poincare cross-section, of a strange
attractor.

CumMmeTpusi UrpaeT 3HAYUTEIbHYIO POJIb KaK B 33/1auaX KIACCHYECKOH MEXaHUKH, TaK U B
3a/jauax KBaHTOBOW MexaHUKH. CyIeCTBEHHBIM Pa3IMYMEM SIBISETCS TO, YTO B KBAHTOBOM Mexa-
HUKE T0CJIC YCTAaHOBJICHUS! PABHOBECHS TUNIOTHOCTD BEPOSTHOCTH SIBJISICTCS TTOJTHOCUMMETPUIHOMN
10 OTHOLLIEHHUIO K IpyIIe CUMMETPUM HUCXOAHBIX YPABHEHUH, B TO BpeMs KaK B KIIACCUYECKON
(1)I/I3I/IK€ peICHUA MOT'YT HE OBITH MOJITHOCUMMECTPUYIHBIMH, TO €CTh CUMMETPUA MOXKCT HAPyILIATb-
csi. YTOOBI 3TO TOHSATH, IOCTATOYHO OOPATHTHCS K PEIICHHUSIM KETICPOBCKOM 3a/1a4i B KBAHTOBOMH
(aTrom BOIOpO/Ia) M KITACCUYECKOM (JIBIDKEHUE TIJIAHET) 3aadax.
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