воды. В итоге можно считать, что комплекс указанных параметров позволяет достаточно уверенно прогнозировать сорбционные свойства природных глин в качестве сорбентов для извлечения катионов тяжелых металлов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Барбалат Ю. А., Брыкина Г. Д., Гармаш А. В. и др.* Основы аналитической химии / Ред. Ю. А. Золотов. М.: Высшая школа, 2001. 415 с.
- 2. *Бриноли Г. В.* Каолиновые, серпентиновые и родственные им минералы // Рентгеновские методы изучения и структура глинистых минералов / Ред. Г. Браун. М.: Мир, 1995. С. 70–164.
- 3. Везенцев А. И., Королькова С.В., Воловичева Н. А. Установление кинетических закономерностей сорбции ионов Cu²⁺ нативными и магний-замещенными формами монтмориллонитовых глин // Сорбционные и хроматографические процессы. 2010. Т. 10. № 1. С. 115–120.
 - 4. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 306 с.
- 5. *Путилина В. С., Галицкая И. В., Юганова Т. И.* Адсорбция тяжелых металлов почвами и горными породами. Характеристики сорбента, условия, параметры и механизмы адсорбции. Новосибирск: ГПНТБ СО РАН, 2009. 155 С.
 - 6. *Танабе К*. Твердые кислоты и основания. М.: Мир, 1976. 154 с.
- 7. *Тарасевич Ю. И., Овчаренко Ф. Д.* Адсорбция на глинистых минералах. Киев: Наукова думка, 1975. 351 с.
- 8. *Тарасевич Ю. И., Поляков В. Е., Иванова З. Г., Крысенко Д. А.* Получение и свойства клиноптилолита, модифицированного диоксидом марганца // Химия и технология воды. 2008. Т. 30. № 2. С. 159–170.

REFERENCES

- 1. *Barbalat Ju.A., Brykina G. D., Garmash A. V. i dr.* Osnovy analiticheskoj himii / Red. Ju.A. Zolotov. M.: Vysshaja shkola, 2001. 415 s.
- 2. *Brindli G. V.* Kaolinovye, serpentinovye i rodstvennye im mineraly // Rentgenovskie metody izuchenija i struktura glinistyh mineralov / Red. G. Braun. M.: Mir, 1995. S. 70–164.
- 3. *Vezentsev A. I., Korol'kova S. V., Volovicheva N. A.* Ustanovlenie kineticheskih zakonomernostej sorbcii ionov Cu²⁺ nativnymi i magnij-zameshchennymi formami montmorillonitovyh glin // Sorbcionnye i hromatograficheskie processy. 2010. T. 10. № 1. S. 115–120.
 - 4. Greg S., Sing K. Adsorbtsija, udel'naja poverhnost', poristost'. M.: Mir, 1984. 306 s.
- 5. Putilina V. S., Galickaja I. V., Juganova T. I. Adsorbtsija tjazhelyh metallov pochvami i gornymi porodami. Harakteristiki sorbenta, uslovija, parametry i mehanizmy adsorbtsii. Novosibirsk: GPNTB SO RAN, 2009. 155 s.
 - 6. Tanabe K. Tverdye kisloty i osnovanija. M.: Mir, 1976. 154 s.
- 7. Tarasevich Ju. I., Ovcharenko F. D. Adsorbtsija na glinistyh mineralah. Kiev: Naukova dumka, 1975. 351 s.
- 8. *Tarasevich Ju. I., Poljakov V. E., Ivanova Z. G., Krysenko D. A.* Poluchenie i svojstva klinoptilolita, modifitsirovannogo dioksidom margantsa // Himija i tehnologija vody. 2008. T. 30. № 2. S. 159–170.

В. Н. Пак, Д. В. Формус, О. А. Фарус, С. М. Шилов

СТРОЕНИЕ И ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ НИЗКОРАЗМЕРНЫХ ФОРМ ОКСИДОВ МЕДИ, НИКЕЛЯ И КОБАЛЬТА, СИНТЕЗИРОВАННЫХ В ПОРИСТОМ СТЕКЛЕ

Разработан метод «пошагового» синтеза низкоразмерных структур (наночастиц, монослоев) оксидов двухвалентных меди, никеля и кобальта в пористом стекле. Результаты измерений электрической проводимости подтверждают возможность направленного формирования оксидных структур двумерного типа.

Ключевые слова: оксиды меди, никеля, кобальта, наночастицы, монослои, электрическая проводимость.

V. N. Pak, D. V. Formus, O. A. Farus, S. M. Shilov

Composition and Electric Conductivity of Low-sized Copper, Nickel and Cobalt Oxides Forms Synthesized in Porous Glass

A method has been worked out for "step-by-step" synthesis of low-sized oxides structures (nanoparticles, monolayers) of bivalent copper, nickel and cobalt in porous glass. The results of the electric conductivity measurements support a possibility of aimed formation of two-dimensional type oxides structures.

Key words: oxides of copper, nickel, cobalt, nanoparticles, monolayers, electrical conductivity.

Возможности применения пористых стекол (ПС) в качестве сред для формирования наноструктур с заданными электрическими свойствами остаются практически не исследованными. Вместе с тем именно здесь не исключено проявление специфики обмена и переноса электронов в случае малого числа структурных единиц (10^{15} – 10^{16} ед/см²) на начальной стадии заполнения ими поверхности [1;6; 8]. Определение характера изменения электрической проводимости, имея самостоятельное значение, призвано прояснить вопрос о форме существования и размерных особенностях поведения веществ, вводимых в наноструктурированное пространство ПС. В связи с этим в настоящей работе проведено сравнительное исследование характера и последствий модифицирования ПС оксидами двухвалентных меди, кобальта и никеля с целью определения влияния химической природы оксидов на величину и характер изменения проводимости.

Методика синтеза

В экспериментах использовали пластинки ПС, полученные в соответствии с регламентом [2], размером $1\cdot1\cdot0.1$ см, с преобладающим радиусом сквозных каналов r=70 нм, с удельной поверхностью $S_{yд}=22$ м²/г и объемом пор $V_{\pi}=0.34$ см³/г. Синтез оксидов меди(II), никеля(II) и кобальта(II) осуществляли пропиткой ПС водными растворами нитратов $M(NO_3)_2$ с последующей дегидратацией образцов и полным разложением солей прокаливанием на воздухе. Постепенное наращивание массы оксидов обеспечивали путем многократного повторения операций пропитка-разложение. «Темп» увеличения массы оксидов в ПС задавали низкой величиной концентрации пропиточных растворов и определяли как режим «малого шага». В таблице приведены результаты «пошагового» синтеза и свойства ряда образцов на примере системы ПС/СиО. Нанесение оксида проведено с использованием раствора $Cu(NO_3)_2$ с концентрацией 0.15 моль/л; установленный рост содержания CuO в IIC-70 (Q), как и ожидалось, близок линейному.

Электрическая проводимость системы СиО/ПС

Измерения электрического сопротивления (R) осуществляли поперек пластин (вдоль сквозных каналов) ПС на частоте 1 кГц с использованием универсального измерителя Е7–11 (в ряде случаев моста P–5058). С целью снижения контактного сопротивления пластинки покрывали слоем графитового порошка толщиной ~ 1 мм со средним размером частиц 10–20 мкм. Затем образцы помещали между прижимными (с постоянным усилием 200 г/см²) плоскими полированными графитовыми электродами с введенными в них медными

токоотводами. Значения R пересчитывали в удельную проводимость (σ) с учетом реальных размеров образцов:

$$\sigma = l/R \cdot S \left(\text{Om} \cdot \text{cm} \right)^{-1}, \tag{1}$$

где l — толщина пластинки ПС (см), S — ее площадь (см²). Результаты изучения характера изменения проводимости в серии образцов системы CuO/ПС–70 предоставляют важную информацию о характере заполнения поверхности наращиваемым оксидом (см. табл.).

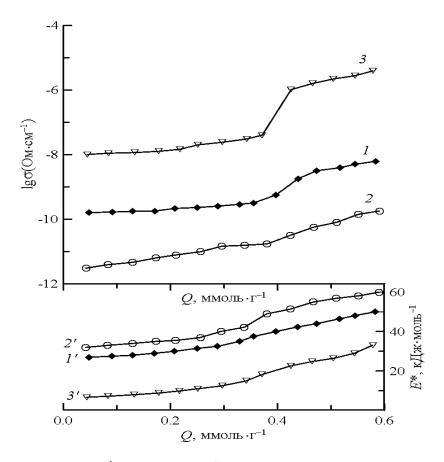
Содержание оксида меди (Q), проводимость при комнатной температуре (σ_{293}), степень заполнения поверхности (θ) и число полиэдров [CuO₆] на площадке 10 Å² (n) образцов системы CuO/ПС–70

Образец	Q	σ_{293}	θ	n
	% масс ммоль/г	$(OM \cdot cM)^{-1}$		
1	0.35 0.043	1.03·10 ⁻⁸	0.10	0.1
2	0.67 0.084	$1.10 \cdot 10^{-8}$	0.20	0.2
3	1.06 0.133	1.14·10 ⁻⁸	0.31	0.3
4	1.42 0.178	1.25·10 ⁻⁸	0.42	0.5
5	1.73 0.217	$1.44 \cdot 10^{-8}$	0.51	0.6
6	2.00 0.251	1.96·10 ⁻⁸	0.59	0.7
7	2.36 0.297	2.38·10 ⁻⁸	0.70	0.8
8	2.72 0.342	2.94·10 ⁻⁸	0.80	0.9
9	2.95 0.371	4.00·10 ⁻⁸	0.87	1.0
10	3.38 0.425	$1.00 \cdot 10^{-6}$	1.0	1.2
11	3.70 0.465	$1.55 \cdot 10^{-6}$	1.1	1.3
12	4.01 0.504	$2.20 \cdot 10^{-6}$	1.2	1.4
13	4.33 0.544	$2.72 \cdot 10^{-6}$	1.3	1.5
14	4.60 0.578	$3.86 \cdot 10^{-6}$	1.4	1.6

В случае сухого ПС величина $\sigma < 10^{-11} \, (\mathrm{Om \cdot cm})^{-1}$ оказывается за пределами возможностей определения. Тем более характерно, что нанесение сверхмалых порций оксида меди уже обеспечивает возникновение первичных каналов сквозной проводимости. При этом необычный вид зависимости $\lg \sigma(Q)$, отражающий наращивание оксида «малыми шагами» (см. табл.), указывает на специфические особенности формирования его структуры. На начальном участке зависимости $\lg \sigma(Q)$ постепенное увеличение числа закрепляемых медь (II) оксидных полиэдров сопровождается плавным ростом проводимости. Однако очередное незначительное повышение содержания оксида до значений Q > 0.371 ммоль/г вызывает отчетливо выраженный скачок σ (см. табл.). Регистрируемая узкая область протекания (перколяции) характеризует высокую вероятность преимущественного формирования структуры проводящего оксида двумерной, близкой к мнонослойной. Подтверждение сказанного может быть получено с учетом известной величины удельной поверхности ПС—70 ($S_{yz} = 22 \, \mathrm{m}^2/\mathrm{r}$) путем оценки среднего числа полиэдров [CuO6] на единичной площадке при условии их планарного распределения в виде

$$n = Q \cdot N_A / S_{VA}, \tag{2}$$

где N_A — число Авогадро. В таком приближении при достижении значений Q, ограничивающих область протекания (табл.), на площадку в 10Å^2 приходится одна (вполне соразмерная площадке) структурная единица [CuO₆]. В соответствии с этим критерием можно ввести в качестве параметра степень заполнения поверхности наращиваемым оксидом


$$\theta = Q_{\text{TekVillee}}/0.425 \tag{3}$$

(соответствующие значения θ также приведены в таблице). Таким образом, есть основания считать, что завершение процесса формирования медь (II) оксидного монослоя в интервале $Q=0.371\div0.425$ ммоль/г сопровождается усилением коллективных электронных $3d_{\pi}-2p_{\pi}$ взаимодействий в системе и, соответственно, резким увеличением проводимости.

Нетрудно допустить, что монослой медь (II) оксидных полиэдров представляет собой по существу поверхностный аналог силиката меди. Образование множественных «якорных» связей с носителем –Si–O–Cu– и "мостиков" –Cu–O–Cu– в ходе сопряжения полиэдров в тангенциальном направлении оказывается энергетически предпочтительным по сравнению с нормальным (относительно поверхности) направлением роста. Кроме того, в качестве важного фактора влияния следует учесть ярко выраженную электронакцепторную способность ПС как формы аморфного кремнезема [4,7], оказывающую мощное поляризующее действие на закрепляемый слой. Указанные структурные особенности сдерживают агрегацию оксида меди в трехмерные частицы, обеспечивая его монослойное распределение.

Сравнение электрической проводимости систем МеО/ПС

На рисунке приведены полученные при комнатной температуре зависимости логарифма удельной проводимости модифицированного стекла от содержания нанесенных оксидов $\lg \sigma(Q)$ и показано изменение энергий активации проводимости $E^*(Q)$, рассчитанных по ее температурным зависимостям для ряда образцов с возрастающим содержанием депозитов.

Зависимости логарифма электрической проводимости и энергии ее активации от содержания оксидов двухвалентных кобальта (1, l'), никеля (2, 2') и меди (3, 3') в пористом стекле

Хорошо видно, что в поведении систем MeO/ПС-70 обнаруживаются как близкое сходство, так и заметные отличия. Общим в характере зависимостей $\lg\sigma(Q)$ является отчетливое проявление трех участков. Последовательное накопление оксидов на стенках сквозных каналов вначале сопровождается слабым монотонным повышением σ . Затем следует участок значительного увеличения проводимости, по завершении которого темп ее роста вновь становится низким. Отчетливое сходство рассматриваемых систем проявляется и в зависимостях $E^*(Q)$, форма которых в определенной степени воспроизводит особенности изменения проводимости. Поскольку проводимость ПС лежит за пределами диапазона измерений, уровень значений, достигаемый при осуществлении уже первого шага нанесения оксидов, следует связать с формированием на стенках каналов носителя первичных токовых путей в виде протяженных цепочек сопряженных металлкислородных полиэдров. Выигрыш энергии при удлинении цепей сопряжения может быть причиной их преимущественного образования и выстраивания вдоль сквозных каналов пористого стекла.

Предлагаемый вариант самоорганизации, в свою очередь, позволяет дать предварительную трактовку характера зависимостей $E^*(Q)$ (рис.). Низкие значения энергий активации в начальной стадии заполнения поверхности характеризуют тепловое возбуждение колебаний в проводящих цепочках, способствующее усилению $3d_{\pi}-2p_{\pi}$ сопряжения в мостиках -M—O—M—.

В ходе последующего монотонного накопления оксидов цепочки постепенно «обрастают» боковыми связями -M-O-M-, что сопровождается повышением жесткости структуры, сдерживает темп роста проводимости и отражается небольшим, но уверенно регистрируемым увеличением значений E^* . Дальнейшее развитие двумерных оксидных структур в плане поверхности приводит к образованию множественных контактов между ними и завершается формированием распределения, близкого монослойному. Соответственно на втором участке заполнения поверхности оксидами наблюдается согласованное возрастание темпа роста значений σ и E^* . На третьем участке обсуждаемых зависимостей постепенное сверхмонослойное наращивание оксидов определяет дальнейшую стабилизацию структуры в целом и сопровождается лишь незначительным ростом как значений проводимости, так и энергии ее активации.

Рассмотрим отличия свойств систем, определяемые природой модифицирующих оксидов. Прежде всего, следует уточнить причины значительного снижения проводимости в ряду $\sigma_{\text{CuO}} >> \sigma_{\text{CoO}} > \sigma_{\text{NiO}}$. Механизм проводимости включает инжекцию электронов с электрода и их перенос по сопряженным связям –М–О–М–. Представления о подобных процессах активированной миграции (хоппинга) электронов восходят к классическим работам [3; 6]. Так, в случае капсулированных форм оксида меди указанный механизм по существу реализуется за счет «переключения» типичных для нее валентных состояний:

$$[-Cu^{+}(e)-O-Cu^{2+}-O-Cu^{2+}-] \rightarrow [-Cu^{2+}-O-Cu^{+}(e)-O-Cu^{2+}-] \rightarrow [-Cu^{2+}-O-Cu^{2+}-O-Cu^{2+}-].$$
 (4)

Относительной легкости переноса электронов здесь можно поставить в соответствие низкое значение потенциала окислительно-восстановительного перехода $E^{\rm o}({\rm Cu^+}-e \to {\rm Cu^{2^+}})$ = 0.153 B [5]. В случае же оксидов двухвалентного кобальта и никеля осуществление проводимости по приведенной схеме испытывает существенные затруднения, поскольку требует «перехода» атомов в несвойственное им однозарядное состояние. Указанные особенности отчетливо отражаются (см. рис.) и в соотношении энергий активации проводимости

рассматриваемых систем $E^*_{\text{CuO}} << E^*_{\text{NiO}}$, выполняемом при всех сопоставимых значениях степени заполнения поверхности.

Резко выраженный скачок проводимости, регистрируемый в ходе наращивания оксида меди, оказывается растянутым и сглаженным в стеклах с включенными оксидами никеля и кобальта (см. рис.). Причиной отмеченного, очевидно, служит различие степени $3d_{\pi}$ – $2p_{\pi}$ электронного сопряжения по связям –М–О–М–. Соответственно формирование медь (II) оксидного монослоя протекает в условиях нарастающего усиления коллективных электронных взаимодействий в системе и проявляется в резком изломе на зависимости $\lg \sigma(Q)$. Степень π -связывания в мостиках –Со–О–Со– и –Ni–О–Ni–, по всей видимости, не столь значительна, что проявляется в существенном снижении проводимости, в изменении характера ее зависимости от содержания оксидов и повышенных значениях энергии ее активации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гусев А.И., Ремпель А.А. Нанокристаллические материалы. М.: Физматлит, 2000. 223 с.
- 2. *Любавин М. В., Буркат Т.М., Пак В. Н.* Синтез кремнеземных мембран с заданными параметрами пористой структуры // Неорганические материалы. 2008. Т. 44. № 2. С. 248–252.
- 3. *Мотт Н., Дэвис Э.* Электронные процессы в некристаллических веществах. М.: Мир, 1974. 472 с
- 4. *Пак В. Н., Тихомирова И. Ю., Буркат Т. М., Лобов Б. И.* Свойства титансодержащих кремнеземов и особенности состояния воды на их поверхности // Журнал физической химии. 1999. Т. 73. № 11. С. 2024–2028.
 - 5. Рабинович В. А., Хавин З. Я. Краткий химический справочник. Л.: Химия, 1977. С. 304.
 - 6. Чопра К. Л. Электрические явления в тонких пленках. М.: Мир, 1972. 435 с.
- 7. *Чуйко А. А.* Развитие исследований в области химии поверхности твердых тел // Теоретическая и экспериментальная химия. 1987. Т. 23. № 5. С. 597–620.
- 8. Шабанова Н. А., Попов В. В., Саркисов П. Д. Химия и технология нанодисперсных оксидов. М.: ИКЦ «Академкнига», 2007. 345 с.

REFERENCES

- 1. Gusev A. I., Rempel' A. A. Nanokristallicheskie materialy. M.: Fizmatlit, 2000. 223 s.
- 2. *Ljubavin M. V., Burkat T. M., Pak V. N.* Sintez kremnezemnyh membran s zadannymi parametrami poristoj struktury // Neorganicheskie materialy. 2008. T. 44. № 2. S. 248–252.
 - 3. Mott N., Djevis E. Elektronnye protsessy v nekristallicheskih veshchestvah. M.: Mir, 1974. 472 s.
- 4. *Pak V. N., Tihomirova I. Ju., Burkat T. M., Lobov B. I.* Svojstva titansoderzhashchih kremnezemov i osobennosti sostojanija vody na ih poverhnosti // Zhurnal fizicheskoj himii. 1999. T. 73. № 11. S. 2024–2028.
 - 5. Rabinovich V. A., Havin Z. Ja. Kratkij himicheskij spravochnik. L.: Himija, 1977. S. 304.
 - 6. Chopra K. L. Elektricheskie javlenija v tonkih plenkah. M.: Mir, 1972. 435 s.
- 7. *Chujko A. A.* Razvitie issledovanij v oblasti himii poverhnosti tverdyh tel // Teoreticheskaja i eksperimental'naja himija. 1987. T. 23. № 5. S. 597–620.
- 8. *Shabanova N. A., Popov V. V., Sarkisov P. D.* Himija i tehnologija nanodispersnyh oksidov. M.: IKTs «Akademkniga», 2007. 345 s.