5. Vjacheslavova O. F., Bavykin O. B. Primenenie fraktal'nogo analiza dlja opisanija i otsenki stohasticheski sformirovannyh poverhnostej // Izvestija Moskovskogo gosudarstvennogo tehnicheskogo universiteta MAMI. 2012. № 2 (14). T. 2. S. 61–63.

6. *Vjacheslavova O. F.* Sovremennye tehnologii obrabotki materialov v svete teorii fraktalov i ee prakticheskogo prilozhenija // Uprochnjajushchie tehnologii i pokrytija. 2006. № 2. S. 34–43.

7. Saushkin B. P., Shandrov B. V., Morgunov Ju. A. Perspektivy razvitija i primenenija fizikohimicheskih metodov i tehnologij v proizvodstve dvigatelej // Izvestija Moskovskogo gosudarstvennogo tehnicheskogo universiteta MAMI. 2012. № 2. S. 242–248.

8. Jakovlev A. V., Milovzorova A. N. Otsenka rezul'tatov v sisteme avtomatizirovannogo analiza sherohovatosti poverhnosti // Metody i ustrojstva peredachi i obrabotki informatsii. 2001. № 1. S. 202–203.

УДК 669.712.2; 661. 862. 32; 628.335

У. Ш. Мусина

ЩЕЛОЧНЫЕ РЕАГЕНТЫ ДЛЯ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД

Дано теоретическое обоснование получения реагентов на основе алюминатов, ферритов и силикатов кальция для очистки промышленных сточных вод: вычислены энергии кристаллических решеток минералов, определена их удельная поверхность и пористость, проведен термодинамический анализ взаимодействия минералов с сульфат-ионами, представлены термодинамические расчеты и результаты синтеза дифференцированных минералогических фаз на основе кальция для очистки промышленных сточных вод.

Ключевые слова: алюминаты, ферриты, силикаты, удельная поверхность, пористость, очистка воды.

U. Mussina

ALKALINE REAGENTS FOR THE TREATMENT OF INDUSTRIAL WASTE WATER

The article gives a theoretical basis for preparation of reagents based on aluminates, ferrites and calcium silicates for industrial wastewater treatment: The energies of crystal lattices of minerals have been calculated, determined by their specific surface area and porosity. A thermodynamic analysis of interaction of minerals with sulfate ions has been conducted. The thermodynamic calculations and results of synthesis of differentiated mineralogical phases based on calcium for the treatment of industrial waste water are presented.

Keywords: aluminates, ferrites, silicates, surface area, porosity, water treatment.

Наиболее часто применяемым щелочным реагентом для очистки сточных вод практически от всех примесей является известь, которая используется самостоятельно, либо в смеси с другими реагентами, например, кислыми — коагулянтами — солями алюминия и железа. Одним из недостатков применения последних является недостаточная степень очистки воды при температуре ниже 11°C (сульфат алюминия), повышенная цветность (соли железа), дефицит и их дороговизна.

В последнее время многие исследователи предлагают использовать различные кальцийсодержащие материалы, либо смеси оксидов кальция и алюминия, или сочетание смесей солей кальция и алюминия, кальция и железа. Наибольший эффект очистки наблюдается при использовании химически связанных соединений оксидов кальция и алюминия, кальция и железа, кальция и кремния.

Ряд изоморфных замещений образует Ca (в меньшей степени Al, Fe, Si), искаженная структура которого может быть такой сильной, что возможна частичная аморфизация минерала. Следовательно, такие соединения обладают высокой поверхностной активностью и могут быть использованы для очистки водных растворов. Это связано с тем, что кальций имеет непостоянную координацию, образуя соединения C_3A , C_3S , γ - C_2S , CA, β - C_2S и др., и упорядоченную структуру, образуя гидравлически инертные C_2AS , CA₆, α - C_2S .

Для изучения процессов очистки воды были синтезированы минералы системы CaO — Al₂O₃, CaO — Fe₂O₃, CaO — SiO₂.

Минералы системы CaO — Al₂O₃. Получение минералов системы CaO — Al₂O₃ высокой мономинеральности проводилось с использованием составляющих: γ -Al₂O₃ и Ca(OH)₂, так как, согласно расчетам энергии Гиббса уравнений получения минералов этой системы, вероятность получения с их использованием была предпочтительной, что особенно важно при синтезе неустойчивого соединения 3CaO· Al₂O₃ (C₃A), которое при незначительных примесях разлагалось на C₁₂A₇ и 60% CaO. Все минералы измельчались до 40 мкм. Об устойчивости алюминатов кальция можно судить по энергии их кристаллических решеток, а цикл Борна — Габера для расчета теплового эффекта разрушения кристаллических решеток.

Так, цикл Борна — Габера для минерала С₃А выглядит следующим образом:

$$2[Ca] + 2[Al] + 3(O_2) \xrightarrow{-3S_{Ca}; -2S_{Al}} 3(Ca) + 2(Al) + 3(O_2)$$

$$\begin{vmatrix} -\Delta H^{\circ} & \downarrow & -3I_{Ca}^{2+} & -2I_{Al}^{3+} & \downarrow & 6O \\ & +6E_O^{2-} & \\ C_3A \xleftarrow{+Uk} & 3Ca^{2+} & 2Al^{3+} & 6O^{2-} \\ & & K$$
ристаллический и онный газ

 $U\kappa - \Delta H^{o} - 3S_{Ca} - 2S_{Al} - 3I_{Ca2+} - 2I_{Al3+} - 3D_{O2} + 6E_{02-} = 0;$ U_{крист.} — энергия кристаллической решетки;

ΔH° — теплота образования C₃A из элементов в стандартных условиях;

 S_{Ca} ; S_{Al} — теплота сублимации кальция и алюминия при температуре 0 К, 1,7 и 2,6 эв/г-ион (1эв=23,046 ккал) [1, с. 356];

I_{Ca2+}; I_{Al3+} — энергия ионизации 17,9 и 53,0 эв/г-ион [6, с. 356];

D₀₂ — теплота молекулярной диссоциации О₂, 118,32 ккал/моль [1, с. 140];

E₀₂- — энергия, выделяющаяся при поглощении атомами кислорода электронов, освободившихся при ионизации, 47 ккал/г-ион [6, с. 356].

 $U_{\text{крист}} = 850 + 236046 (3 \cdot 1,7 + 2 \cdot 2,6 + 3 \cdot 17,9 + 2 \cdot 53,0) + 3 \cdot 118,32 - 6 \cdot 47 = 4840,78$ ккал/моль или 20267,37 кДж/моль.

Энергия кристаллической решетки и ее разрушения ΔH^{o}_{298} составляющих: Са 2+ по справочным данным 3533,8 [3, с. 105]; 3432,68 [3, с. 147], (расчетные значения: по формуле Капустинского U_{крист} =3539,64; по циклу Борна — Габера ΔH^{o}_{298} = 2578,06 кДж/моль).

Для Al3+: $\Delta H^{o}_{298} = 15358,65$ [1, с. 140] (расчетные U_{крист} = 15916,28; $\Delta H^{o}_{298} = 12553,256$ кДж/моль).

Значения кристаллохимических радиусов взяты по Гольдшмидту: Са — 1,06; Al — 0,57; О — 1,32 А.

Результаты расчета энергии кристаллических решеток и их разрушения для алюминатов кальция сведены в таблицу 1.

Таблица 1

Mu-	Теплота образования,	Энергии кристал. кДж	лических решеток, с/моль	Iluaro O	Приведенные значения энергий, кДж/моль		
нера- лы H^0_{298} , по формуле ккал/моль Капустинског		по формуле Капустинского	по циклу Борна — Габера	Число О	Иприв	ΔH^0_{298}	
C ₃ A	850	26535,19	20267,37	6	4422,50	3577,9	
C ₁₂ A ₇	4630,5	153889,60	118868,24	33	4663,30	3602,1	
CA	554,8	19455,92	15147,24	4	4863,98	3786,8	
CA ₂	954,2	35372,20	27702,17	7	5053,20	3957,5	
CA ₆	2546,5	99037,32	77569,55	19	5212,50	4082,6	

Энергии кристаллических решеток алюминатов кальция U_{крист} и их разрушения ΔH^{o}_{298}

Полученные результаты относятся к идеальным структурам кристаллов, а приведенные значения $U_{\text{крист.}}$ и H^0_{298} носят больше качественный, чем количественный характер.

Полученные результаты показали, что энергия решетки (химическая устойчивость) минералов увеличивается от высокоосновных к низкоосновным, что объясняется повышающейся упорядоченностью структуры минералов.

Высококальциевые минералы C_3A , $C_{12}A_7$ и CA обладают значительно деформированной решеткой, имеющей пустоты [2, с. 7–10], за счет чего эти минералы должны обладать высокой поверхностной и сорбционной активностью. В решетке C_3A имеются крупные полости радиусом 1,47 A, облегчающие осуществление гетеровалентных изоморфных замещений и размещение других крупных катионов. Например, $C_{12}A_7$ по своей структуре является цеолитом.

С помощью методов Дерягина и электронной микроскопии мы исследовали пористость (δ) и удельную поверхность (S_{yd}) минералов. Кажущаяся и истинная плотности определены методом жидкостной пикнометрии. Метод Дерягина основан на измерении сопротивления, оказываемого пористым телом протеканию разреженного воздуха. В отличие от других методов он прост, доступен и достаточно точен, однако дает оценку величины внешней макроповерхности, в то время как метод БЭТ позволяет определять поверхность закрытых пор и микротрещин.

В таблице 2 сведены средние значения пористости и удельной поверхности алюминатов кальция, полученные методом Дерягина и электронно-микроскопическим методом.

Из таблицы 2 видно, что высокоосновные минералы имеют меньшую плотность, большую пористость и удельную поверхность. Пористую структуру образца определяли с помощью электронной микроскопии, используя некоторые стереометрические методы [5, с. 48–50], согласно которым суммарную площадь поверхностей раздела фаз в единице объема находили измерением длины их следов h или подсчетом точек m следов пересечений секущей с границами раздела фаз на единице длины секущей.

Минерал	Плотность, г/см ³		Пористость и удельная поверхность						
		$ ho_{\kappa a ightarrow c}$	Memod 4	Ј ерягина	Электронная микроскопия				
	$ ho_{ucm}$		δ, %	Syд, м²/г	Syд, м²/г	Расчет б, % методом			
						точек	хорд		
C ₃ A	4,3215	2,4628	55,76	0,3971	0,2723	43,18	41,38		
$C_{12}A_{7}$	4,5932	2,6126	55,57	0,3567	0,2795	42,42	43,04		
CA	4,9496	2,8689	52,42	0,3698	0,2320	39,39	42,4		
CA ₂	5,0498	2,7890	51,50	0,3380	0,2220	38,93	41,00		
CA ₆	7,2150	3,4877	40,97	0,2210	0,1243	38,64	39,12		

Значения истинной ρ_{ncr} и кажущейся $\rho_{каж}$ плотностей, пористости δ и удельной поверхности Syg минералов

Связь этих параметров описывается формулой

$$S_{y\partial} = [4K_p \sum P/\pi] / \rho_{\kappa} = [K_p \cdot 2m] / \rho_{\kappa},$$

где K_p — коэффициент размерностей; ΣP — суммарная длина линий следов на единице площади шлифа; ρ_{κ} — кажущаяся плотность.

Расчет пористости и удельной поверхности образцов проводился методом точек и методом хорд (микрофотография с примером расчета, рис. 1).

Рис. 1. Количественная обработка микроскопических данных: *а)* методом точек; *б)* методом хорд

При расчете удельной поверхности минерала $C_{12}A_7$ определены: число пересечений 39; $\rho_{\kappa} = 2,612$ г/см³; длина 108·7 = 680400 A (1 мм = 900 A). $P = 39/0,680400 \cdot 10^{-4} = 57,319223 \cdot 10^4$ м.

Sуд = $[4.57,319223 \cdot 10^4 / 3,14] / 2,612 \cdot 10^6 = 0,2793 \text{ m}^2/\text{г}.$

Среднее значение $S_{\nu d}$ при расчете пяти фотографий составило 0,2795 м²/г.

Минералы системы CaO — Fe₂O₃. Аналогично алюминатам кальция активными являются высокоосновные ферриты кальция.

Для получения новых реагентов заданного состава на основе ферритов кальция был проведен синтез минералов системы CaO — Fe₂O₃.

В системе CaO — Fe₂O₃ известны четыре соединения: CaO · 2Fe₂O₃ (14,94% CaO; 85,06% Fe₂O₃); CaO · Fe₂O₃ (30% CaO, 70% — Fe₂O₃); 2CaO · Fe₂O₃ (41,26% Fe₂O₃; 58,74% CaO); 3CaO · Fe₂O₃ (51,3% CaO, 48,7% Fe₂O₃). Относительно существования C₃F данные противоречивы.

Взаимодействие CaO с Fe₂O₃ начинается при относительно низких температурах 250– 425°С. С повышением температуры мономинеральность и скорость образования минералов повышается [3, с. 147–151]. Так же, как и в алюминатах кальция, покрывающим компонентом в системе является CaO, однако велика и скорость встречной диффузии Fe²⁺ и O²⁻. Из-за интенсивной термической диссоциации Fe₂O₃ и потери кислорода решетка кристаллов непрерывно деформируется, обогащается вакансиями, и это существенно облегчает течение топохимической реакции синтеза ферритов кальция.

Образование ферритов кальция протекает в последовательности от низкоосновных к высокоосновным. Смесь CaO с Fe₂O₃ состава 1 : 1 при температуре 900°C в течение 1 часа завершается на 75–80%. Остаточное же количество CaO в спеке связывается значительно медленнее. Состав ферритов кальция является часто нестехиометрическим вследствие термической диссоциации Fe₂O₃ при высоких температурах. Потеря кислорода оксидом железа уменьшается, если Fe₂O₃ связан в соединение. При термической диссоциации Fe₂O₃ при высоких температурах. Потеря кислорода оксидом железа уменьшается, если Fe₂O₃ связан в соединение. При термической диссоциации Fe₂O₃ при температуре более 1340°C минералов CF и C₂F образуются FeO — вюстит, железистый вюстит — FeO · Fe, кальциовюстит — CaO · FeO. Из всех минералов системы CaO · Fe₂O₃ неустойчивым является C₃F.

Для оценки вероятности протекания реакций образования ферритов кальция была рассмотрена зависимость $\Delta G^{0}_{\ T}$ реакций от состава исходных смесей. Анализировались значения $\Delta G^{0}_{\ T}$ при стехиометрическом соотношении CaO : Fe₂O₃. В качестве исходных материалов взяты Fe₂O₃, CaO, CaCO₃, Ca(OH)₂.

Исходные данные для расчета и анализа реакции образования моноферрита кальция CaO·Fe₂O₃ (CF), являющегося одним из минералов в предлагаемых нами реагентах, приведены в таблице 3.

Таблица З

Соединение	$A H^0 f 208 m \pi a a / 4 a m$	AC^0 f 208 H $Dac/2007$	C_{μ}	a = a + bT + c	T^2
	ДП Ј, 298 КДЖ/МОЛЬ	$\Delta G_m J$, 298 КДЭК/МОЛЬ	а	$b \cdot 10^3$	$c \cdot 10^{-5}$
CaO	-635,85	-604,45	48,85	4,52	-6,53
Fe ₂ O _{3гематит}	-822,5	-741,3	98,4	77,86	-14,86
Fe ₂ O ₃	-		132,7	19,93	

Термодинамические характеристики соединений

Составляющими для синтеза моноферрита кальция являются соединения CaO, Fe₂O_{3гематит} и Fe₂O₃.

Определим $\Delta G^0_{\ T} = f(T)$ для реакции CaO + Fe₂O_{3 гематит} \rightarrow CaO· Fe₂O₃.

 $\Delta H^{0}_{298} = \Delta H^{0}_{298(CF)} - \Delta H^{0}_{298(CaO)} - \Delta H^{0}_{298(Fe2O3)} = -1531,65 - (-635,85) - (-822,5) = -73,3 кДж/моль = -73300 Дж/моль;$

 $\Delta G^{0}_{\ T} = G^{0}_{\ T} = \Delta G^{0}_{\ T}_{298(CF)} - \Delta G^{0}_{\ T}_{298(CaO)} - \Delta G^{0}_{\ T}_{298(Fe2O3)} = -1424, 1 - (-604, 45) - (-741, 3) = -78,35 \text{ кДж/моль} = -78350 \text{ Дж/моль};$

 $\Delta \alpha = \Delta \alpha_{CF} - \Delta \alpha_{CaO} - \Delta \alpha_{Fe2O3} = 165 - 48,85 - 98,4 = 17,75;$ $\Delta b = (20,05 - 4,52 - 77,86)10^{-3} = -62,33 \cdot 10^{-3};$ $\Delta c = [-12,58 - (-6,53 - 14,86)]10^5 = 8,59 \cdot 10^5.$ Определим константу интегрирования ΔH_0 :

 $\Delta H^{0} = \Delta H^{0}_{298} - \Delta \alpha 298 - \frac{\Delta b}{2} 298^{2} + \Delta c \ 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{2} + 288^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298 - 62,33 \ / \ 2 \cdot 10^{-3} \cdot 298^{-1} = -73300 - 17,75 \cdot 298^{-1} = -7300 - 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 10,75 + 1$ + 8,59 $\cdot 10^5 \cdot 298^{-1} = -72939,4$ Дж/моль = -72,9394 кДж/моль.

Сводные данные расчетов приведены в таблицах 4 и 5.

Таблица 4

Термодинамические характеристики реакции синтеза монокальциевого феррита

	_		$C_p = \Delta \alpha$	$\alpha + \Delta bT$	$+ \Delta cT^2$	$G^0_m = \Delta$	$H_0 + \alpha T$	TinT + B	$t^2 + \Delta C t^2$	+IT
Схема реакции	$\Delta H^{0}_{298,}$	$ar G^{0}_{298}$	$\Delta \alpha$	$\Delta b \ I0^3$	$\Delta c \ I0^{-5}$	0HD Джсмоль	α	$b \cdot I0^{3}$	$c \cdot 10^{-5}$	Ι
$\begin{array}{c} CaO + Fe_2O_3 _{\text{гематит}} \\ \rightarrow CaO \cdot Fe_2O_3 \end{array}$	-73300	-78350	17,75	-62,33	8,59	-72939,4	-17,75	31,16	8,59	78,5
$\begin{array}{c} CaO + Fe_2O_3 \rightarrow \\ CaO \cdot Fe_2O_3 \end{array}$	-895800	-819700	-16,55	-4,4	-6,27	-892800	16,55	2,2	-6,27	153,8

Таблииа 5

Значения энергии Гиббса реакций синтеза моноферрита кальция

Схема рекции	$\varDelta G^{0}_{\ T298}$, кДж/моль					
Т, К	298	600	800	1000	1100	1200
$\begin{array}{c} CaO + Fe_2O_{3rematut} \rightarrow \\ CaO \cdot Fe_2O_3 \end{array}$	-75,47	-51,77	-36,1	-20,36	-12,15	-4,7
$\begin{array}{c} CaO + Fe_2O_3 \rightarrow \\ CaO \cdot Fe_2O_3 \end{array}$	-819,8	-736,7	-680,22	-622,9	-593,8	-564,5

Находим константу I из уравнения $\Delta G_{T}^{0} = f(T)$ при 298 К:

 $\Delta G_{T}^{0} = \Delta H_{0} + \Delta \alpha T \ln T - \frac{\Delta b}{2} T^{2} - \frac{\Delta c}{2} T^{-1} + IT - 78350 = -72939, 4 - 17, 75 \cdot 298 \cdot \ln 289 + 10000 + 10000 + 1000 + 1000 + 10000 + 10000 + 10000 +$ + 62,33 / 2·10⁻³·298² – 8,59 / 210⁵· 298⁻¹ + I 298. Отсюда I = 78,5.

 $\Delta G^{0}_{T} = -72939.4 - 17.75T \ln T + 31.165 \cdot 10^{-3}T^{2} + 4.295 \cdot 10^{-5}T^{-1} + 78.5T.$

Определяем ΔG^0_{T} при температурах: 298, 600, 800, 1000, 1100 и 1200 К, кДж/моль: $\Delta G^0_{298} = -75,47; \Delta G^0_{600} = -51,77; \Delta G^0_{800} = -36,1; \Delta G^0_{1000} = -20,36; \Delta G^0_{1100} = -12,15; \Delta G^0_{1200} = -4,7.$ Подобным образом рассчитываем значения ΔG^0_{T} и для других реакций.

На основании полученных данных следует: моноферрит кальция может быть получен при взаимодействии CaO и Fe₂O₃. Более низкое значение ΔG^0_{T} отмечается при использовании гематита.

Для всех остальных реакций составлены уравнения изменения изобарного потенциала от температуры. По этим уравнениям рассчитаны изменения изобарного потенциала в температурном интервале 500-1200°С.

Полученные результаты представлены на рисунке 2.

Как видно из рисунка 2, при использовании CaO для синтеза моноферрита кальция при температуре 900°С наблюдается небольшой перелом линий (6), $\Delta G^{0}_{\ T}$ мало изменяется. Образование CF протекает уже при температуре 500°С.

При повышении температуры термообработки образование CF протекает интенсивнее. При использовании CaCO₃ процесс образования феррита кальция также интенсифицируется, так как CaCO₃ диссоциирует с образованием активных молекул CaO. Процесс ферритообразования протекает интенсивнее при использовании Ca(OH)₂ (5). Аналогично протекают реакции образования двухкальциевого феррита (4, 2, 3).

Таким образом, для достижения высокой мономинеральности ферритов кальция синтез необходимо проводить при температуре 1000–1100°С, но не выше 1300°С.

Рис. 2. Зависимость энергии Гиббса от температуры синтеза ферритов кальция

Минералы системы CaO-Fe₂O₃ синтезировались в муфельной печи при температурах 1000, 1100°С. Высокая мономинеральность достигалась при стехиометрически необходимом соотношении CaO : Fe₂O₃ и повышенном времени выдержки 2–3 часа. Сложность вызвал минерал C₃F — неустойчивое соединение. В результате синтеза из Fe₂O₃ и CaCO₃ получен спек, содержащий смесь CaO и 2CaO· Fe₂O₃. 2CaO·Fe₂O₃ может быть получен дегидратацией соединения, аналогичного гидрогранату кальция — C₃AS_пH_(6-2п) — C₃FS_nH_(6-2п) при умеренных температурах. Синтез чистых ферритов кальция мономинеральности 98–99,8% проводился по методике, представленной в таблице 6.

Таблица б

Ферриты кальция	Т, °С	Выдержка, ч	Примечание			
$CaO \cdot Fe_2O_3$	1000	Промежуточное перетирание — 3	Игольчатые кристаллы черного			
			цвета			
CaO $\cdot 2Fe_2O_3$	1100	Промежуточное перетирание — 3	Красный спек			
2CaO ·Fe ₂ O ₃	1100	Промежуточное перетирание — 3	Красно-коричневый спек			
$3CaO \cdot Fe_2O_3$	1100	Промежуточное перетирание — 3	Спек темно-рубинового цвета.			
			Резко охладить			

Методика получения моноферритов кальция

Мономинеральность и фазово-минералогический состав полученных минералов исследовались рентгенографически, ИКС и электронно-микроскопическими методами.

Весь полученный ряд минералов далее тщательно перетирался, просеивался и исследовался в качестве реагента для очистки модельных вод от ряда примесей: сульфатов, фтора, хлоридов.

Исследования показали, что более эффективным является применение свежеприготовленной 3%-ной суспензии данных реагентов.

Минералы системы CaO — SiO₂. В системе CaO — SiO₂ известны четыре соединения: CaO·SiO₂, 3CaO·2SiO₂, 2CaO·SiO₂, 3CaO·SiO₂. Однако фазовый состав системы сильно усложняется полиморфизмом всех названных минералов: CS образует волластонит (β -CS) и псевдоволластонит (α -CS), C₃S₂-высокотемпературный ранкинит и низкотемпературный килхоанит, C₂S- γ -, α -, α - и β -модификации, C₃O- α - и β -модификации.

Эти соединения встречаются во многих силикатных материалах — портландцементном клинкере, огнеупорах, шлаках черной металлургии и т. д., в виде минералов ранкинита $3CaO\cdot 2SiO_2$, бредигита α - $2CaO\cdot SiO_2$, ларнита β - $2CaO\cdot SiO_2$, псевдоволастонита α -CaO·SiO₂, волластонита β -CaO·SiO₂, различных модификаций двух- и трех кальциевого силиката.

Последовательность реакций образования силикатов кальция исследовали Будников, Яндер, Мамыкин, Нагаи, Мчедлов-Петросян и др. Все исследователи признают СаО покрывающим компонентом реакции, интенсивно диффундирующим в решетку SiO₂. Скорость диффузии Si⁴⁺ в CaO на несколько порядков меньше. Поэтому реакции силикатообразования начинаются на поверхности контакта зерен CaO и SiO₂ и постепенно распространяются в глубь зерен кремнекислоты. Первичным продуктом реакции, по мнению преобладающего большинства исследователей, является ортосиликат кальция Ca₂[SiO₄], характеризующийся островным строением. В последующем в качестве промежуточных продуктов реакции возникают ранкинит Ca₃[Si₂O₇] и волластонит Ca[SiO₃], характеризующиеся соответственно анионными группами [Si₂O₇]⁶⁻ и цепями [SiO₃]²⁻. Предельно насыщенным минералом, образующимся в последнюю очередь, является вновь островной Ca₂[SiO₄]. СаО. Причина столь сложного превращения — «полимер (SiO₂) → островной ортосиликат → полимерный метасиликат → островной трехкальциевый силикат» — пока еще не выяснена.

В начальный момент реакции при избытке ионов Ca^{2+} происходит разрыв всех связей –Si –O–Si– в поверхностном слое кремнезема и образование изолированных групп [SiO₄]⁴⁻, связываемых друг с другом посредством внедрившихся ионов кальция. Структура этого слоя вначале не упорядочена, аморфна, а затем приобретает все более отчетливый кристаллический характер. Состав образующихся силикатов, скорость реакции и степень ее

завершенности зависят от соотношения реагирующих компонентов, от их природы и дисперсности, от вида примесей и т. п. На контактной поверхности между CaO и SiO₂ быстро образуется, как полагают Яндер и Хофман, тонкий слой C₂S. Далее, при небольшом избытке CaO, на поверхности раздела CaO–C₂S образуется также тонкий слой C₃S, а на поверхности раздела C₃S — SiO₂ образуется C₃S₂ и CS.

Образование C₃S наблюдается при температурах ниже 1300°С. Как только все количество CaO внедрится в слой продуктов реакции, его средняя основность постепенно понижается за счет разложения C₃S и C₂S и диффузии свободной CaO в направлении свободного SiO₂. При отношении CaO : SiO₂ = 3 : 1, когда постоянно имеется избыток CaO, она диффундирует достаточно быстро и на поверхности раздела C₂S–SiO₂ образуются лишь небольшие количества низкоосновных C₃S₂ или CS. В зерне SiO₂ сразу в преобладающем количестве синтезируется C₂S.

Начало образования C₂S в смеси CaO : SiO₂ = 1 : 1 исследователи П. П. Будников, Д. П. Бобровник, С. Нагаи и некоторые другие относят к 500–600°С. Ускорение реакции при 600°С авторы связывают с превращением $\beta \rightarrow \alpha$ -кварца. При 1000°С в продуктах реакции преобладали CS и C₃S₂ и лишь в незначительном количестве присутствовал C₂S, а при – 1200°С — лишь один CS. Авторы указывают на постоянное наличие в составе продуктов реакции промежуточного соединения C₃S₂, которая в низкоосновных смесях при температуре – 1200°С переходит в CS, а в высокоосновных смесях при – 1400°С — в C₃S.

Расчет теплоты образования силикатов кальция. При образовании силикатов и оксидов обычно выделяется теплота. Одно и то же сложное соединение может быть получено либо путем соединения соответствующих оксидов, либо обменной реакцией. При этом тепловой эффект реакции будет различен.

Если соединение образуется из элементов, то к тепловому эффекту его образования из оксидов прибавляют тепловые эффекты образования самих оксидов. В случае обменной реакции тепловой эффект равен алгебраической сумме теплот образования соединений, участвующих в реакции. Но тепловой эффект такой реакции не может быть назван теплотой образования исходного соединения, так как в него суммарно входят тепловые эффекты разложения и образования других продуктов реакции.

Так, например, теплота образования CaO · SiO₂ различна в зависимости от способа его получения:

1) Ca + Si + 1¹ /₂ O₂ = CaO · SiO₂ – 1635,73 кДж/моль H₁ = -1635,73 кДж/моль; 2) CaO + SiO₂ = CaO · SiO₂ – 141,33 кДж/моль Δ H₂ = -1635,73 – (-635,1–859,3) = -141,33 кДж/моль; 3) CaSO₄ + SiO₂ = CaO · SiO₂ + SO₂ + ¹/₂ O₂ Δ H₃ = (-1635,73 – 296,9) – (-1424 – 859,3) = 350,67 кДж/моль.

Синтез силикатов кальция. Синтез силикатов кальция высокой мономинеральности проводился с использованием j-Al₂O₃ (хч) и SiO₂ (хч), по методике, приведенной в таблице 7.

Сырьевые шихты подвергали измельчению в течение 5 часов до размера частиц 60 мкм и менее. Синтез минералов проводился в алундовых стаканах, зачехленных графитовыми цилиндрами в печи Таммана, большие партии — в высокочастотной печи. Продолжительность выдержки температуры при обжиге обусловливалась полнотой прохождения реакции и оценивалась по содержанию свободной CaO в продуктах термообработки. Количество свободной CaO определялось по этилово-глицератному методу. При значительном содержании после обжига свободной CaO образцы вновь измельчали до размера зерен

менее 60 мк и вновь обжигали. Эти операции повторяли до тех пор, пока содержание CaO в продуктах обжига не превышало 1–2%. Характеристики минералов представлены в виде таблицы 8.

Таблица 7

Алюминат кальция	Т, К	Метод синтеза	Выдержка, ч	Примечание
3CaO SiO ₂	1623	спекание	3	Медленное охлаждение
2CaO SiO ₂	1423	спекание	1	вместе с печью. Промежу-
3CaO 2SiO ₂	1273	спекание	1	точное перетирание спеков
CaO SiO ₂	1473	спекание	1	

Методика синтеза силикатов кальция

Таблица 8

Характеристика синтезированных минералов

Силикаты кальция	<i>CaO</i> , %	<i>SiO</i> ₂ , %	Крист. опт., %	Рентген	Примечание
C ₃ S	73,69	26,31	98	C ₃ S	Белый хрупкий спек, са-
					морассыпающийся
C_2S	65,11	34,89	99	C_2S	Белый хрупкий спек
C_3S_2	58,34	41,66	99	C_3S_2	Белый хрупкий спек
CS	48,27	51,73	99	CS	Белый хрупкий спек

Результаты расчетов энергии кристаллических решеток минералов представлены в таблице 9.

Из таблицы 9 видно, что значения энергии решетки, вычисленные по формулам Капустинского, близки к энергиям решеток, найденным экспериментальным путем.

Таблица 9

Элемент	Ζ	r, нм	Соединение	Σn	U _{эксп} , кДж/моль	U _{к по (1.9)} , кДж/моль	Степень ион- ности связи, %
Ca	2+	0,104	CaO	2	-3522,93	-3432,68	79
Si	4+	0,039	SiO ₂	3	-12957,85	-13233,20	51
Al	3+	0,057	Al ₂ O ₃	5	-15137,71	-15353,65	63
0	2-	0,136					

Энергия кристаллических решеток соединений (U), вычисленная по формуле Капустинского

Вероятность удаления ряда примесей из растворов была выявлена в результате термодинамических расчетов реакций образования труднорастворимых соединений. Так, термодинамический анализ реакций взаимодействия минералов системы CaO–Al₂O₃, CaO–Fe₂O₃, CaO–SiO₂ с сульфат-ионами показал возможность самопроизвольного протекания всех промежуточных реакций (1)–(3) при нормальных условиях:

$$xCaO \cdot yAl_2O_3 + (x+3y) H_2SO_4 = xCaSO_4 + y[Al_2SO_4)_3 + (x+3y) H_2O$$
(1)

$$xCaO \cdot yFe_2O_3 + (x+3y) H_2SO_4 = xCaSO_4 + y[Fe_2SO_4)_3 + (x+3y) H_2O$$
 (2)

 $xCaO \cdot ySiO_2 + xH_2SO_4 = xCaSO_4 + ySiO_2 + xH_2O$ (3)

Условность реакций объясняется тем, что при определенных условиях (например, длительности отстаивания при взаимодействии алюминатов кальция с сульфат-ионами) образуется сложное соединение эттрингит (или соль Кандло $3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot (37-39)H_2O$), а реакция (1) является промежуточной. Высокая степень очистки сточных вод при использовании всех высокоосновных минералов любой из кальциевых систем объясняется образованием труднорастворимых соединений, связываемых в сложные кристаллогидраты. По аналогии проведены расчеты взаимодействия минералов с ионами фтора и фосфатами с образованием труднорастворимых соединений, удаляемых в виде осадков. Например, при взаимодействии с фторидами C_3A :

 $3CaO \cdot Al_2O_3 + 12HF = 3CaF_2 \downarrow + 2AlF_3 \downarrow + 6H_2O, \Delta G = -1031,84$ кДж/моль.

При взаимодействии С₃S:

 $3CaO \cdot SiO_2 + 6H^+ + 6F^- = 3CaF_2 \downarrow + SiO_2 + 3H_2O, \Delta G = -589,12$ кДж/моль;

двухкальциевого силиката C_2S , $\Delta G = -339,37$ кДж/моль;

моносиликата кальция CS, $\Delta G = -142,15$ кДж/моль;

аналогично рассчитаны реакции с ферритами кальция. Во всех случаях сохраняется закономерность термодинамической вероятности связывания примесей в труднорастворимые соединения предпочтительно с высокоосновными минералами.

Выводы

Для оптимизации состава щелочных реагентов изучены минералы систем CaO — Al_2O_3 , CaO — Fe_2O_3 , CaO — SiO_2 , выполнены расчеты энергии кристаллических решеток минералов систем, что позволило теоретически построить ряд активности минералов этих систем — повышающихся от высокоосновных к малоосновным, от алюминатов к ферритам и затем — к силикатам кальция. Термодинамический анализ взаимодействия минералов с сульфат- и фтор-ионами показал высокую вероятность образования труднорастворимых соединений, способствующих более тонкой очистке водных растворов от этих примесей. Отработана методика синтеза мономинералов: все минералы термодинамически возможно получить при температурах 1000–1500 °C с высокой степенью мономинеральности.

СПИСОК ЛИТЕРАТУРЫ

1. Бабушкин В. Н., Матвеев Г. М., Мчедлов-Петросян О. П. Термодинамика силикатов. М., 1972. 351 с.

2. Бойкова А. И. Кристаллохимия твердых растворов минералов цементного клинкера. М., 1990. С. 7–10.

3. Бутт Ю. М. Портландцементный клинкер. М., 1967. С. 147–151.

4. Краткий справочник физико-химических величин / Под ред. А. А. Равделя, А. Ш. Пономаревой. Л.: Химия. 1983. 280 с.

5. Колосенцев С. Д., Плаченов Т. Г. Порометрия. Л.: Химия. 1988. 175 с.

6. Либау М. Физико-химия кремнезема. М., 1986. 356 с.

REFERENCES

1. Babushkin V. N., Matveev G. M., Mchedlov-Petrosjan O. P. Termodinamika silikatov. M., 1972, 351 s.

2. Bojkova A. I. Kristallohimija tverdyh rastvorov mineralov tsementnogo klinkera. M., 1990. S. 7–10.

3. Butt Ju. M. Portlandtsementnyj klinker. M., 1967. S. 147-151.

4. Kratkij spravochnik fiziko-himicheskih velichin / Pod red. A. A. Ravdelja, A. Sh. Ponomarevoj. L.: Himija, 1983. 280 s.

5. Kolosentsev S. D., Plachenov T. G. Porometrija. L.: Himija, 1988. 175 s.

6. Libau M. Fiziko-himija kremnezema. M., 1986. 356 s.