ФИЗИКА

A. Nikolaeva, A. Marchenko

TEMPERATURE DEPENDENCE OF THE FREQUENCY OF TWO-ELECTRON EXCHANGE BETWEEN IMPURITY NEGATIVE-U TIN-CENTERS IN LEAD SULFIDE

A Fast two_electron exchange between neutral Sn^{2+} and doubly ionized Sn^{4+} impurity negative_U tin centers in partially compensated $Pb_{0.98}Sn_{0.02}Na_{0.01}Tl_{0.01}S$ solid solutions has been found by emission Mössbauer spectroscopy on $^{119mm}Sn(^{119m}Sn)$ isotope; the lifetime of the Sn^{2+} and Sn^{4+} states changes from ~ 6×10^{-4} to ~ 8×10^{-9} s with a change in temperature from 295 to 900 K.

Keywords: Mössbauer spectroscopy, two electron exchange, U-centers.

А. В. Николаева, А. В. Марченко^{*} Победитель конкурса поддержки публикационной активности молодых исследователей (проект 3.1.2, ПСР РГПУ им. А. И. Герцена)

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ЧАСТОТЫ ДВУХЭЛЕКТРОННОГО ОБМЕНА МЕЖДУ ПРИМЕСНЫМИ U-МИНУС-ЦЕНТРАМИ ОЛОВА В СУЛЬФИДЕ СВИНЦА

Методом эмиссионной мессбауэровской спектроскопии на изотопе 119mm Sn(119m Sn) обнаружен процесс быстрого двухэлектронного обмена между нейтральными Sn²⁺ и двукратно ионизованными Sn⁴⁺ примесными U-минус-центрами олова в частично компенсированных твердых растворах $Pb_{0.98}$ Sn_{0.02}Na_{0.01}Tl_{0.01}S, причем время жизни состояний Sn²⁺ и Sn⁴⁺ меняется от ~ 6 · 10⁻⁴ с до ~ 8 · 10⁻⁹ с при изменении температуры от 295 до 900 K.

Ключевые слова: мессбауэровская спектроскопия, двухэлектронный обмен, U-минусцентры.

The notion of negative-U centers was used for the first time by Anderson [1] to explain the electric and magnetic properties of glassy semiconductors. Mössbauer spectroscopy on ¹¹⁹Sn isotope was found to be the most efficient method for identifying negative-U centers in glassy and crystalline semiconductors, as well as superconductors [2, 3]. In particular, it was shown that impurity tin atoms in lead chalcogenides (PbS and PbSe) are located in regular sites of cationic sublattice and form two-electron donor centers with negative correlation energy; the parameters of the microscopic model of negative-U centers were also determined. However, the question of the existence of two-electron exchange between neutral and ionized negative-U centers in semiconductors remains open. In this article, we report on the uncovering of this process and determining the temperature dependence of the frequency of two-electron exchange between neutral and ionized tin centers in partially compensated solid solutions based on lead sulfide by emission Mössbauer spectroscopy on ^{119mm}Sn(^{119m}Sn) isotope in the temperature range of 80–900 K.

 $Pb_{0.98}Sn_{0.02}Na_{0.01}Tl_{0.01}S$ solid solutions were prepared by alloying the initial components of semiconductor purity grade in evacuated quartz ampoules with subsequent annealing ingots and then pressed powders at 650°C for 120 h. All samples were single-phase and had a NaCl-type structure. The samples had p-type conductivity and were nondegenerate (the hole concentration varied from ~ 5 × 10¹³ at 80 K to ~ 10¹⁷ cm⁻³ at 295 K). $Pb_{0.98}^{119mm}Sn_{0.02}Na_{0.01}Tl_{0.01}S$ Mössbauer sources were prepared using a ¹¹⁸Sn preparation irradiated by a neutron flux of ~ 10¹⁵ cm⁻² s⁻¹ for 6 months.

In figure 1 Emission Mössbauer spectra of ${}^{119\text{mm}}\text{Sn}({}^{119\text{m}}\text{Sn})$ isotope in Pb_{0.98}Sn_{0.02}Na_{0.01}Tl_{0.01}S solid solutions recorded at 80 and 295 K are shown. They are superpositions of two lines of instrumental width ($G_{sn^{2+}} = G_{sn^{4+}} = 0.80(1)$ mm/sm), isomeric shifts δ of which correspond to the Sn²⁺ ($\delta_{sn^{2+}} = 3.69(1)$ mm/s) and Sn⁴⁺ ($\delta_{sn^{4+}} = 1.26(1)$ mm/s) centers.

Fig. 1. Emission Mössbauer spectra of 119mm Sn(119m Sn) isotope in Pb_{0.98}Sn_{0.02}Na_{0.01}Tl_{0.01}S solid solutions recorded by a resonant detector at source temperatures of 80, 295, 400, 500, and 900 K. The lines corresponding to the Sn²⁺ and Sn⁴⁺ centers are shown. The spectrum recorded at 900 K corresponds to the averaged state of tin centers

An increase in temperature from 80 to 295 K is accompanied by a decrease in relative intensity R of the Sn^{2+} line (R = 0.49(1) at 80 K and R = 0.41(2) at 295 K), which can be explained by a sharper temperature dependence of the fraction of recoilless processes for divalent tin compounds, as compared with four-valence tin compounds. The Sn^{2+} and Sn^{4+} lines are somewhat broadened ($G_{sn^{2+}} = G_{sn^{4+}} = 0.90(1)$ mm/s) and located closer to each other ($\delta_{sn^{2+}} = 3.62(1)$ mm/s) and Sn⁴⁺ ($\delta_{sn^{4+}} = 1.36(1)$ mm/s).

At 500 K (figure 1), the relative intensity of the Sn²⁺ line further decreases (R = 0.31(3)) and the Sn²⁺ and Sn⁴⁺ lines are significantly broadened ($G_{Sn^{2+}} = G_{Sn^{4+}} = 1.6(1)$ mm/s) and even closer to each other ($\delta_{Sn^{2+}} = 1.5(1)$ mm/s and $\delta_{Sn^{4+}} = 3.2(1)$ mm/s). Finally, at 900 K (figure 1), the lines are merged into one broadened line (G = 2.4(1) mm/s), the isomeric shift of which ($\delta = 2.0(2)$ mm/s) is intermediate between those for the Sn²⁺ and Sn⁴⁺ centers.

The spectra in figure 1 illustrate a typical process of electron exchange between two Sn^{2+} and Sn^{4+} states; the frequency of electron exchange increases with an increase in temperature. The spectrum recorded at 900 K corresponds to the averaged state of tin centers, which arises due to the fast electron exchange between Sn^{2+} and Sn^{4+} . The absence of the intermediate charge state of tin centers (Sn^{3+}) in the spectra indicates that the exchange occurs via simultaneous transfer of two electrons.

To determine the frequency of electron exchange, the experimental spectra were processed by the least-squares method on the assumption that the shape of the spectral line is determined by the relation

$$W(V) = -\frac{AC + BD}{C^2 + D^2},$$

where:

$$\begin{split} A &= J_{Sn^{2+}} \left(G_{Sn^{4+}} + \tau_{Sn^{4+}}^{-1} + \tau_{Sn^{2+}}^{-1} \right), \\ B &= J_{Sn^{2+}} \left(\delta_{Sn^{4+}} - V \right) + J_{Sn^{4+}} \left(\delta_{Sn^{2+}} - V \right), \\ C &= \left(G_{Sn^{2+}} + \tau_{Sn^{2+}}^{-1} \right) \left(G_{Sn^{4+}} + \tau_{Sn^{4+}}^{-1} \right) - \left(\delta_{Sn^{2+}} - V \right) \left(\delta_{Sn^{4+}} - V \right) - \tau_{Sn^{2+}}^{-1} \tau_{Sn^{4+}}^{-1}, \\ D &= \left(\delta_{Sn^{2+}} - V \right) \left(G_{Sn^{4+}} + \tau_{Sn^{4+}}^{-1} \right) + \left(\delta_{Sn^{4+}} - V \right) \left(G_{Sn^{2+}} + \tau_{Sn^{2+}}^{-1} \right), \end{split}$$

 $J_{Sn^{2+}}$ and $J_{Sn^{4+}}$ — are the amplitudes of the Sn²⁺ and Sn⁴⁺ lines, respectively; and $\tau_{Sn^{2+}}$ and $\tau_{Sn^{2+}}$ are the lifetimes of the Sn²⁺ and Sn⁴⁺ centers, respectively (we assume that $\tau_{Sn^{2+}} = \tau_{Sn^{4+}} = \tau$ because of the lack of experimental parameters).

The temperature dependence of the frequency of electron exchange $v = \tau^{-1}$ between the centers of the Sn²⁺ and Sn⁴⁺ is shown in figure 2.

The activation energy of exchange is 0.11(2) eV. This corresponds to the distance of the Fermi level from the valence band to the hole partially-compensated solid solutions Pb_{1-x-1}

 $_{y}$ Sn_x(Na,Tl)_yS [2], and indicates that the electron exchange between the centers of Sn²⁺ and Sn⁴⁺ is implemented using state of the valence band. In favor of such a mechanism is evidenced by the fact that the exchange is observed at low concentrations of tin, when the process can not be a direct exchange of electrons between the centers of the tin.

REFERENCES

1. Anderson P. W. Model for electronic structure of amorphous semiconductors // Physical Review Letters. 1975. V. 34. No 15. P. 953–955.

2. Bordovsky G, Marchenko A. and Seregin P. Mossbauer of Negative U Centers in Semiconductors and Superconductors. Identification, Properties, and Applicaton. Academic Publishing GmbH & Co. 2012. 499 p.

3. Bordovskii G. A., Castro R. A., Marchenko A.V., Seregin P. P. Thermal stability of tin charge states in the structure of the (As₂Se₃)_{0.4}(SnSe)_{0.3}(GeSe)_{0.3} glass // Glass Physics and Chemistry. 2007. V. 33. No. 5. P. 467-470.

A. Shaldenkova, P. Seregin

CORRELATIONS OF THE ⁶³Cu NMR DATA WITH THE ⁶⁷Cu (⁶⁷Zn) AND THE ⁶¹Cu (⁶¹Ni) EMISSION MÖSSBAUER DATA FOR CERAMIC SUPERCONDUCTORS

A linear correlation between the quadrupole coupling constant C_{Cu} measured by the ⁶³Cu NMR technique on the one hand and the quadrupole coupling constants C_{Zn} and C_{Ni} measured by the ⁶⁷Cu(⁶⁷Zn) and ⁶¹Cu(⁶¹Ni) emission Mössbauer spectroscopy on the other hand has been found for ceramic superconductors.

Keywords: Mössbauer spectroscopy, NMR, electric field gradient.

А. В. Шалденкова, П. П. Серегин^{*} Победитель конкурса поддержки публикационной активности молодых исследователей (проект 3.1.2, ПСР РГПУ им. А. И. Герцена)

КОРРЕЛЯЦИОННЫЕ СООТНОШЕНИЯ МЕЖДУ ДАННЫМИ ЯМР ⁶³Си И ЭМИССИОННОЙ МЕССБАУЭРОВСКОЙ СПЕКТРОСКОПИИ ⁶⁷Си(⁶⁷Zn) И ⁶¹Сu(⁶¹Ni) ДЛЯ КЕРАМИЧЕСКИХ СВЕРХПРОВОДНИКОВ

Установлена линейная корреляция между постоянной квадрупольного расщепления C_{Cu} , измеренной методом ЯМР⁶³Си и постоянными квадрупольного расщепления C_{Zn} и C_{Ni} , измеренные методом эмиссионной мессбауэровской спектроскопии⁶⁷Си(⁶⁷Zn) и ⁶¹Си(⁶¹Ni) для керамических сверхпроводников.

Ключевые слова: мессбауэровская спектроскопия, ЯКР, градиент электрического поля.

1. Introduction

One of the main problems in physics of high-temperature (high- T_c) superconductors is the determination of the spatial distribution of electronic defects in the lattices of copper metal oxides. A potentially effective method to solve this problem is to compare the experimentally determined and calculated parameters of the electric field gradient (EFG) tensor for specific lattice sites [2]. Copper sites are of utmost interest in such work because these atoms are found in the