ВЛИЯНИЕ МЕТОДИКИ ОПТИМИЗАЦИИ ФИЗИЧЕСКОГО СОСТОЯНИЯ УМСТВЕННО ОТСТАЛЫХ УЧАЩИХСЯ МЛАДШИХ КЛАССОВ С ОСЛАБЛЕННЫМ ЗДОРОВЬЕМ НА ФУНКЦИОНАЛЬНЫЕ ПОКАЗАТЕЛИ ИХ СЕРДечно-СОсудистой СИСТЕМЫ

И. И. Васянина

Работа представлена кафедрой теоретических и медико-биологических основ физической культуры и спорта Дальневосточного государственного университета.
Научный руководитель — доктор педагогических наук, профессор В. Г. Тютюнков

В статье рассматривается содержание методики оптимизации физического состояния для умственно отсталых школьников с ослабленным здоровьем и функциональные изменения сердечно-сосудистой системы под влиянием данной методики.

The article deals with the content of methods for optimising physical conditions for mentally retarded schoolchildren with weakened health and functional changes in the cardiovascular system under the influence of these methods.

Целью воспитания и обучения умственно отсталых школьников является приобретение знаний, умений, навыков и воспитанности такого уровня, который позволил бы им адаптироваться к социальным нормам предстоящей самостоятельной жизни1, реализуемой посредством участия в общественном труде2 (И. М. Бгаunjова, 1994, С. Л. Мирский, 1994). Вся коррекционная работа в системе образования таких детей направлена на приобретение ими рабочей профессии. Для выполнения профессиональных обязанностей у них должен быть сформирован достаточный уровень здоровья. Однако особенность данной категории обучающихся заключается в том, что они нуждаются, особенно в младших классах, в специальных занятиях, направленных на коррекцию3 и компенсацию имеющихся недостатков физического развития и моторики (А. А. Дмитриев, 2002). С этой целью в учебные планы в 1–4-х классах специальных школ в настоящее время введены специальные коррекционные занятия по ЛФК. Наполнение содержания этих занятий (предложено А. А. Дмитриевым, 1986) направлено на коррекцию нарушений координации движений, точности мышечных усилий, развития мелкой моторики. Однако данный автор не ставил своей задачей разработать методику оптимизации физического состояния учащихся перенесших соматические заболевания, что позволило бы им восстановить функциональные возможности организма, снижающиеся во время болезни. Известно, что у многих учащихся коррекционной школы имеются нарушения сердечно-сосудистой, дыхательной, вегетативной и эндокринной систем. У них наблюдается слабость миокарда, аритмия, дыхание нарушено по частоте, глубине, ритму. Эти дети часто болеют простудными заболеваниями (Н. В. Астафьева, 1996, Е. С. Черник, 1997, О. А. Барабаш, 1997).

По данным отдельных региональных министерств и департаментов здравоохранения Дальнего Востока около 30% учащихся специальных (коррекционных) школ VIII вида ежегодно переносят соматические заболевания и нуждаются в адаптивных занятиях по физическому воспитанию. В зависимости от перенесенных заболеваний...
ний, влияющих на снижение уровня функциональных систем организма учащихся, они должны заниматься физическим воспитанием с ограничением физической нагрузки от 1 до 6 месяцев в году.

Нами разработана методика оптимизации физического состояния, основанная на разделах учебной программы, что позволяет учащимся после процесса ее реализации включаться в типовой учебный процесс по физическому воспитанию со всем классом. Методика основывается на разработанном нами программно-методическом обеспечении процесса реабилитации и включает в себя документы планирования: годовой план-график распределения программного материала, поурочно-тематические планы для каждого раздела и конспекты занятий.

Тестирующая часть методики представлена карточной контроль за физическим развитием, функциональным состоянием и двигательными способностями учащихся, описанием тестирующих методик для оценки функционального состояния организма.

Цель методики — повышение компенсаторных возможностей сердечно-сосудистой системы по оценке ортостатической пробы и теста Руфье-Диксона у умственно отсталых учащихся младших классов с ослабленным здоровьем.

Реализация методики оптимизации двигательной сферы для адаптивной физической культуры рассчитана на четыре четверти, т. е. на 68 уроков (двухразовые занятия в неделю по 40 минут). Распределение учебного времени на базовые и вариативные разделы следующее:

Базовая часть представлена разделами:
«Программные основы знаний» (2 часа), в котором предлагается осваивать информацию о строении тела человека, правильной осанке, предупреждении нечастных случаев на занятиях физической культурой, чистоте тела, режиме дня, пользе прогулок и игр на свежем воздухе, строении и функциях органов дыхания, об охране зрения, гигиене сна; на каждом занятии на это отводится 3 минуты.

«Контрольное тестирование» (2 часа).
«Адаптированные игры легкої атлетики» (14 часов) направлены на корректирующее влияние сердечно-сосудистую систему и овошение парадоксальной дыхательной гимнастики А. Н. Стрельниковой, имеющей оздоровительный эффект при лечении широкого спектра заболеваний.

«Адаптивная гимнастика» (30 часов) содержит адаптированные упражнения из гимнастики йоги и гимнастики Пилатес, а также краткую характеристику заболеваний и перечень противопоказаний к физической нагрузке, комплексы специальных упражнений при наиболее распространенных заболеваниях, встречающихся у детей данного контингента. На занятиях рекомендуется использовать диафрагмальное и очищающее дыхание.

«Адаптированное катание на коньках или специальные игры на открытой площадке» (14 часов) направлены на исправление грубых нарушений моторики, оздоровительное влияние данного вида деятельнос- ти на функции внутренних органов, а также укрепление опорно-двигательного аппарата. На занятиях рекомендуется использовать «Стимулирующее очищающие дыхание» и дыхание «Ха!».

Вариативная часть представлена разделом «Психогимнастика» (6 часов) и включает пальчиковую гимнастику, психогимнастику и релаксацию с учетом особенностей детей данной категории.

Предварительный и основной педагогический эксперимент проходил в течение 2004–2006 гг. в школах городов Владивосток и Находка, села Первомайское и поселка Шкотово (Приморский край). Внедрение в практику осуществлялось в 2007 г. Ныне по данной методике работают в городах Владивосток, Находка (Приморский край), Советская Гавань (Хабаровский край), Елизово (Камчатская область), Омск.

Функциональные изменения в сердечно-сосудистой системе служат подтверждением улучшения здоровья, самочувствия, т. е. являются одним из главных признаков фи-
Влияние методики оптимизации физического состояния умственно отсталых учащихся младших...

...ической проблемы. Число сердечных сокращений в покое является важнейшим показателем уровня функционирования целостного организма. Анализ полученных результатов при обследовании ЧСС в покое до и после эксперимента позволяет утверждать, что у умственно отсталых школьников 9, 10 и 11 лет встречается такикардия. Необходимо отметить, что у мальчиков это нарушение встречается реже (29,1%), чем у девочек (41,6%). Наши данные согласуются с исследованиями, проведенными ранее В. М. Медведевой (1978) и Ю. П. Княжным (1985).

В ходе педагогического эксперимента произошли улучшения ЧСС в покое (табл. 1) в пользу средних результатов (нормы) как в экспериментальной группе мальчиков (ЭГМ), так и экспериментальной группе девочек (ЭГД) на 12,5% и на 16,7% соответственно.

Ортостатическая проба позволяет количественно оценить регуляцию деятельнос-

tи сердца, возбудимость и тонус вегетативной нервной системы, которая в целом регулирует деятельность внутренних органов, кровеносных и лимфатических сосудов, желез, обеспечивает также трофическую иннервацию скелетной мускулатуры, рецепторов и самой нервной системы.

Кроме того, ортостатическая проба по изменениям фазовой структуры сердечно-
го цикла позволяет выявить различные нарушения функционального и органического характера. У здоровых людей при перекоде из положения лежа в положение стоя число сердечных сокращений увеличивается, и в первые 15 с можно судить о возбудимости симпатического отдела нервной системы, т. е. о степени зрелости вегетативной нервной системы (С. П. Летунов, Р. Е. Мотылянская, 1951). В клинической медицине при исследованиях данной пробы кроме пульса измеряют и артериальное давление. В своем исследовании мы ограничились анализом динамики пульса.

Таблица 1

<table>
<thead>
<tr>
<th>Группы (n = 24)</th>
<th>Среднее</th>
<th>Брадикардия</th>
<th>Такикардия</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>До эксперимента</td>
<td>После эксперимента</td>
<td>До эксперимента</td>
</tr>
<tr>
<td>ЭГМ</td>
<td>70,8% (17 чел.)</td>
<td>83,3% (20 чел.)</td>
<td>нет</td>
</tr>
<tr>
<td>ЭГД</td>
<td>58,3% (14 чел.)</td>
<td>75% (18 чел.)</td>
<td>нет</td>
</tr>
</tbody>
</table>

В начале педагогического эксперимента мы столкнулись с атипичной реакцией пульса у 53,5% умственно отсталых учащихся на ортостатическую пробу, которая заключалась в следующем: при переходе из положения лежа в положение стоя пульс становился реже по отношению к пульсу лежа, т. е. не происходило компенсаторного повышения ЧСС, что указывает на нарушение сосудистой регуляции и недостаточность симпатического обеспечения. Эту реакцию мы условно называли «физиологически отрицательной». Кроме этого встречалась, хотя и несколько реже (16,6%), другая атипичная реакция, которую мы условно называли «физиологически нулевой», при которой реакция пульса на изменение положения тела в первые 15 с отсутствовала. Такие особенности, по нашему мнению, являются важным звеном патогенеза неврозоподобных состояний, которые часто наблюдаются у детей данного контингента. Следующие типы реакций на ортостатичес-

351
кую пробу встречаются довольно часто у всех категорий населения и называются (В. А. Епишанов, 1987):

- «физиологически слабая», когда пульс учащается от 0 до 6 уд./мин;
- «физиологически умеренная», пульс учащается от 7 до 12 уд./мин;
- «физиологически выраженная» (норма), пульс учащается от 13 до 18 уд./мин;
- «физиологически повышенная», когда пульс учащается от 19 до 24 уд./мин.

Результаты ортостатической пробы, полученные в ходе педагогического эксперимента, представлены в табл. 2.

Таблица 2

Физиологические реакции на ортостатическую пробу умственно отсталых учащихся 9-11 лет

<table>
<thead>
<tr>
<th>Этапы эксперимента</th>
<th>До эксперимента</th>
<th>После эксперимента</th>
<th>До эксперимента</th>
<th>После эксперимента</th>
</tr>
</thead>
<tbody>
<tr>
<td>Физиологически отрицательная</td>
<td>41% (10 чел.)</td>
<td>12,5% (3 чел.)</td>
<td>29% (7 чел.)</td>
<td>0</td>
</tr>
<tr>
<td>Физиологически нулевая</td>
<td>8,3% (2 чел.)</td>
<td>8,3% (2 чел.)</td>
<td>12,5% (3 чел.)</td>
<td>4,1% (1 чел.)</td>
</tr>
<tr>
<td>Физиологически слабая</td>
<td>12,5% (3 чел.)</td>
<td>16,6% (4 чел.)</td>
<td>16,6% (4 чел.)</td>
<td>25% (6 чел.)</td>
</tr>
<tr>
<td>Физиологически умеренная</td>
<td>12,5% (3 чел.)</td>
<td>20,8% (5 чел.)</td>
<td>12,5% (3 чел.)</td>
<td>25% (6 чел.)</td>
</tr>
<tr>
<td>Физиологически выраженная</td>
<td>8,3% (2 чел.)</td>
<td>12,5% (3 чел.)</td>
<td>8,3% (2 чел.)</td>
<td>12,5% (3 чел.)</td>
</tr>
<tr>
<td>Физиологически повышенная</td>
<td>16,6% (4 чел.)</td>
<td>29,1% (7 чел.)</td>
<td>20,8% (5 чел.)</td>
<td>33,3% (8 чел.)</td>
</tr>
</tbody>
</table>

После педагогического эксперимента результаты в типе реакции «физиологически отрицательной» в группе девочек улучшились с 41,6% до 12,5% (разница 29,1%) в группе мальчиков в конце эксперимента данный тип реакции не наблюдался, т. е. улучшение произошло также на 29,1%.

Доля лиц с «физиологически нулевой» реакцией в ЭГД не изменилась, а в ЭГМ уменьшилась на 8,4%. Улучшились результаты также в типе реакции «физиологически слабая». Так, в ЭГД отмечен рост на 4,1%, в ЭГМ – на 8,4%. Встречаемость «физиологически умеренной» реакции в ЭГД увеличилась на 8,3%, у испытуемых в ЭГМ в этом типе реакции отмечен рост на 12,5%. На 4,3% улучшились результаты в экспериментальных группах девочек и мальчиков в типе реакции «физиологически выраженная». Увеличение доли лиц с «физиологически повышенной» реакцией отмечено в ЭГД на 12,5% и в ЭГМ увеличение произошло на 2,5%.

Для детей с нормой интеллекта и занимающихся спортом «физиологически повышенная» реакция расценивается как пере- тренированность организма. Однако изменения, полученные в последнем случае для данного контингента, мы рассматриваем как положительные в связи с тем, что для детей с поражениями ЦНС активизация симпатического отдела вегетативной нервной системы служит стимулирующим фактором в процессе адаптации к нагрузкам как физического, так и умственного характера. А также у детей во время и по окончании эксперимента был отмечен воспитателями хороший сон, и снижения аппетита не наблюдалось. Завершая анализ типов реакции пульса на изменения положения, мы наблюдаем плавное снижение «патологических» реакций и увеличение «физиологически нормальных». В конце эксперимента в группе мальчиков вообще не было обнаружено патологических реакций. Оценка реакций сердечно-сосудистой системы в простом тесте Руфье–Диксона на дозированную физическую нагрузку (20 приседаний за 30 с) (В. И. Дубровский,

352
Влияние методики оптимизации физического состояния умственно отсталых учащихся младших...

1991) у учащихся с умственной отсталостью, перенесших соматические заболевания, оценивалась по формуле:

$$RD = \frac{(p_1 + p_2 + p_3) - 200}{10}$$

где p_1 – пульс в покое, p_2 – пульс после 20 приседаний, p_3 – пульс после минуты отдыха.

Результаты данной пробы представлены в табл. 3.

Оценка реакции сердечно-сосудистой системы учащихся с умственной отсталостью, перенесших соматические заболевания, по тесту Руфье–Диксона на физическую нагрузку (n = 24)

<table>
<thead>
<tr>
<th>Оценка</th>
<th>До эксперимента</th>
<th>Группы (n=24)</th>
<th>ЭГД</th>
<th>ЭГМ</th>
<th>ЭГГ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Неудовлетворительно</td>
<td>20,8% (5 чел.)</td>
<td>0</td>
<td>12,5% (3 чел.)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Слабо</td>
<td>20,8% (5 чел.)</td>
<td>12,5% (3 чел.)</td>
<td>16,7% (4 чел.)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Удовлетворительно</td>
<td>41,7% (10 чел.)</td>
<td>54,2% (13 чел.)</td>
<td>62,5% (15 чел.)</td>
<td>58,3% (14 чел.)</td>
<td></td>
</tr>
<tr>
<td>Хорошо</td>
<td>16,7% (4 чел.)</td>
<td>33,3% (8 чел.)</td>
<td>8,3% (2 чел.)</td>
<td>41,7% (10 чел.)</td>
<td></td>
</tr>
</tbody>
</table>

в 8,3%. По окончании эксперимента мы наблюдаем увеличение результатов «удовлетворительно» в ЭГД и значительное увеличение числа детей с реакцией «хорошо» в ЭГМ на 33,4% и на 16,6% в ЭГД.

Представленные результаты свидетельствуют о положительном влиянии на сердечно-сосудистую систему умственно отсталых учащихся разработанного нами педагогического эксперимента. Эксперимент осуществлялся по методике оптимизации физического состояния, включающей адаптированные разделы школьной программы по физической культуре, авторские методики дыхательных гимнастик, психогимнастики. Позитивная динамика состояния сердечно-сосудистой системы впользу нормальных и физических реакций наблюдалась по результатам ортостатической пробы у 12,5% девочек и 29,1% у мальчиков в тесте Руфье–Диксона – 20,8% и 33,4% соответственно.

Таким образом, результаты оценки методики позволяют ее рекомендовать для широкого внедрения в учебные заведения специального вида.

ПРИМЕЧАНИЯ

1 Баженкова И. М. Коррекционно-развивающее обучение учащихся вспомогательных школ // Дефектология. 1994. № 3. С. 43–45.
3 Дмитриев А. А. Физическая культура в специальном образовании. М.: АКАДЕМА, 2002.
8 Дубровский В. И. Реабилитация в спорте. М.: Физкультура и спорт, 1991. С. 68.