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THE PHOTOINDUCED CHANGE OF DISSOLUTION IN As2Se3  

 
Photoinduced change of dissolution rate in some selective etchants was stud-

ied. Different organic etchants were tried. Two of them, monoethanolamine and 
ethilendiamine, were found to be most effective. Kinetic characteristics, temperature 
and concentration dependences of dissolution processes were analyzed.  
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АНИЗОТРОПИЯ И ДИСПЕРСИЯ СКОРОСТИ И ПОГЛОЩЕНИЯ 
УПРУГИХ ВОЛН В ПЬЕЗОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ 
 

Исследованы акустические свойства пьезоэлектрических кристаллов с 
различными симметрией, структурой и величиной коэффициента электроме-
ханической связи. Установлена зависимость между температурой Дебая, 
сложностью структуры, порядком симметрии и величиной затухания. Обна-
ружено уменьшение поглощения звука в кристаллах лангасита, допированных 
алюминием или титаном, допированных ионами алюминия или титана.  
 
Акустические потери в пьезоэлектрических кристаллах являются одним 

из основных физических параметров, определяющих использование кристалла 
в современных акустоэлектронных приборах. Очень часто сильное фонон-
фононное рассеяние является основным препятствием для применения кри-
сталлов на высоких частотах. Из 100 хорошо изученных монокристаллов только 
несколько соединений имеют достаточно низкие потери, но до недавнего вре-
мени только кристаллический кварц — слабый пьезоэлектрик — сочетал в себе 
малые потери и температурную стабильность упругих параметров [1]. Поиск и 
исследование акустически прозрачных термостабильных пьезоэлектрических 
монокристаллов с высоким коэффициентом преобразования электрической 
энергии в механическую и обратно является актуальным направлением физики 
твердого тела для решения задачи стабилизации и селекции частоты радиодиа-
пазона [2].   

 
Методика эксперимента, исследуемые образцы кристаллов  

и преобразователи гиперзвука 
 

Оптические методы исследования акустики твердого тела обладают тем 
преимуществом перед радиотехническими, что позволяют изучать характери-
стики упругой волны в любой точке среды [3]. Высокочастотные оптические 
методы (Брэгга и Мандельштама—Бриллюэна), кроме того, обладают и боль-
шой чувствительностью по сравнению с радиотехническими (эхо—импульс) и 
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низкочастотными оптическими (Шеффера—Бергмана и Рамана—Ната) метода-
ми, причем метод Брэгга в экспериментальном отношении проще метода Ман-
дельштама—Бриллюэна [4]. 

При рассеянии света на звуке в режиме Брэгга связь угла рассеяния С
2θ  

(равного углу падения света С
1θ ) с частотой ν и скоростью фононов υ : 

 
    υλ=θ=θ nV o

CC 2/sinsin 21 ,        (1) 
 

где углы С
1θ , С

2θ  измеряются в среде, 0λ  — длина волны оптического излуче-
ния в вакууме.  

Поскольку ν и 0λ  измеряются с высокой точностью, измерение υ  сводит-
ся к определению угла дифракции θ . Кришером [5] показана возможность из-
мерения υ  на частоте 109 Гц и на образце размером 10 мм с точностью до 0,1%. 

Измерение затухания звука заключается в наблюдении экспоненциального 
уменьшения интенсивности рассеянного света I при перемещении лазерного 
пучка по кристаллу на расстоянии 12 xxx −=∆ : 

 
    ( ) xPpnI a ∆⋅αρυ≈ exp/ 326 ,                                       (2) 
 
где p — эффективная фотоупругая постоянная, Pa — значение акустической 
мощности упругой волны до смещения, откуда коэффициент затухания  
α , дб/см равен: 
 
    ( ) ( )1 2 2 1α 10 / / ,g Ix Ix x x= −                                        (3) 

 
где 

1xI , 
2xI  — интенсивность в точках х1 и х2 . Схема экспериментальной уста-

новки приведена на рис. 1 
Исследованные кристаллы селенида цинка ZnSe, танталата лития LiTaO3 и  

молибдата гадолиния Gd2(MoO4)2 выращивались в ГОИ им. С. И. Вавилова. 
Кристаллы ниобата бария-натрия Ba2NaNb5O15, и ниобата бария-стронция 
Ba0,4Sr0,6Nb2O6 выращивались в Институте общей физики РАН методом Чох-
ральского в иридиевых тиглях при скорости вращения 30–40 оборотов в минуту 
и скорости вытягивания 5–10 мм/ч на воздухе из конгруэнтного расплава на за-
травках, ориентированных вдоль тетрагональной оси. Отклонение кристалло-
графической оси от оси роста не превышало 1º. Выращенные кристаллы имели 
ростовую полосчатость и синеватую окраску, которая устранялась отжигом в 
кислороде. 

Прозрачные, хорошего оптического качества монокристаллы ортованада-
та кальция Ca3(VO4)2 диаметром до 30 мм и длиной до 70 мм выращивались из 
расплава по методу Чохральского в платиновых тиглях на воздухе при скоро-
стях вытягивания 8 мм/ч и вращения 20 об/мин. Длительный отжиг кристаллов 
при 1110 ºС приводил к значительному укрупнению доменов от 1 мм до 10 мм и 
к сглаживанию их границ. Высокая электропроводность при температурах вы-
ше комнатной не позволяла монодоменизировать кристаллы, поэтому все изме-
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рения акустических свойств ортованадата кальция выполнены в работе на по-
лидоменных кристаллах. 
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Рис. 1. Общая блок-схема установки для исследования  
брэгговского рассеяния света на звуке:  

1 — лазер, 2 — модулятор, 3 — СВЧ-генератор, 4 — СВЧ-резонатор,  
5 — преобразователь LiNbO3, 6 — исследуемый кристалл, 7 — фотоприемник ФЭУ,  

8 — усилитель, 9 — измерительный блок, 10 — осциллограф,  
11 и 12 — электронные вольтметры 

 
Монокристаллы лантан-галлиевого силиката (лангасита) La3Ga5SiO14 вы-

ращивались в Институте монокристаллов методом Чохральского на затравках, 
ориентированных вдоль оптической оси (направление [0001]) или перпендику-
лярно ей (направление [1010]). Выращивание проходило на воздухе в платино-
вых тиглях при скоростях вытягивания 2,5 мм/ч и вращения 20 об/мин. При 
ориентации [0001] монокристаллы росли в виде шестигранных призм. Были от-
работаны технологические режимы для выращивания почти неограненных мо-
нокристаллов диаметром до 24 мм и длиной до 70 мм. Монокристаллы облада-
ли высокой прозрачностью в области 0,27–5,6 микрон, не содержали включе-
ний, рассеивающих излучение лазера, однако независимо от ориентации вытя-
гивания имели объемный дефект, локализованный вдоль оптической оси. Каче-
ство и габариты кристаллов позволяли изготавливать достаточно крупные пье-
зоэлектрические элементы, что определило получение результатов по 
La3Ga5SiO14 с мировым приоритетом. 

Ориентировка образцов проводилась рентгеновским дифрактометром 
УРС-50-ИМ. Перед полировкой образцы ниобата бария-натрия и ниобата ба-
рия-стронция монодоменизировались электрическим полем напряженностью  
5 кв/см, приложенным вдоль тетрагональной оси при Т = 100 ºС с последую-

7 1 

 

8 
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щим охлаждением в поле до комнатной температуры. Степень монодоменности 
контролировалась по минимальному значению полуволнового напряжения Uλ/2. 
Измерение затухания упругих волн или измерение добротности пьезоэлементов 
требуют высокого качества обработки кристаллов. Все грани образцов обраба-
тывались по оптическим стандартам — чистота по 14-му классу, плоскостность 
— не хуже 0,5 кольца, непараллельность граней, перпендикулярных к направ-
лению распространения звука, — не более 5 угловых секунд. Погрешность гео-
метрии образцов — не хуже ±10-2 мм, погрешность ориентации — не хуже 15 
угловых минут по осям Х, Y и 2 угловых минут по оси Z. 

Образцы, приготовленные для исследований методом брэгговского рас-
сеяния, имели форму прямоугольных или косоугольных (с попарно параллель-
ными гранями) призм размерами 10×5×5 мм3 и удлиненных по одному из на-
правлений [100], [001], [110], [101], [111]. Всего было изготовлено от 3 до 30 
образцов каждого монокристалла. 

В области частот звука до 1,5×109 Гц обычно пьезоэлектрические преоб-
разователи звука возбуждаются на резонансных частотах, и даже при работе на 
высоких механических гармониках имеют толщину порядка 50 микрон. Изго-
товление таких тонких пластин с плоскопараллельными полированными граня-
ми является сложной задачей, их использование неудобно и неэффективно, по-
скольку при склейке преобразователя с образцом не обеспечивает контакт всей 
поверхности преобразователя (например, пластинка толщиной 50 микрон и 
диаметром 5 мм имеет контактную площадь порядка 1мм2, что приводит к узо-
сти и непараллельности гиперзвукового пучка). 

Поэтому в работе применялись нерезонансные стержневые преобразова-
тели, в которых при возбуждении поверхности торца с помощью резонатора 
СВЧ (метод К. Н. Баранского) распространялись упругие волны с вектором 
распространения, направленным вдоль длины преобразователя. Преобразова-
тель на частотах 109 Гц должен обладать малым собственным поглощением 
звука и большим коэффициентом электромеханической связи. Известно, что 
ниобат лития по этим параметрам является наиболее эффективным материа-
лом. Направления Z и +1630/Y являются в LiNbO3 направлениями распростра-
нения соответственно чистых продольных и чистых поперечных волн. Коэф-
фициент связи для продольной моды равен 0,17 и 0,62 для сдвиговой моды [2]. 

Преобразователи продольных (Z-среза) и сдвиговых (+1630/Y-среза) 
волн имели форму цилиндров длиной 10…12 мм и диаметром 5 мм. Обработ-
ка была такая же, как и исследуемых кристаллов. Идентификация направления 
вектора смещения у преобразователей сдвиговых волн проводилась на уста-
новке по исследованию акустического парамагнитного резонатора в Институ-
те физики СПбГУ. 

 
Скорость и затухание высокочастотных упругих волн  

в кристаллах ниобата бария-стронция SBN 
 

Для кристаллов тетрагональной системы с точечной группой 422, 4 mm, 
42 mm, 4/mmm (группа Лауэ ТI) выражения для скорости рассмотрены наибо-
лее подробно Браггером  [6]. Упругие константы могут быть рассчитаны из 
скоростей распространения акустических фононов в четырех направлениях 
[100] , [001] , [110] , [101]. Акустические волны в этих направлениях или чисто 
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продольные, или чисто сдвиговые. Следующие выражения дают значения упру-
гих констант через скорости фононов (табл. 1). Исследования распространения 
ВЧ продольных и сдвиговых упругих волн с частотами 500…1700 МГц, прове-
денные методом брэгговского рассеяния излучения лазера на гиперзвуке, по-
зволили определить фазовую скорость и коэффициент поглощения волн вдоль 
направлений [100] , [001] , [110] , [100] и [111] (табл. 2). Дифракция на сдвиго-
вых волнах вдоль [001] и [110] не наблюдалось.       

 
Таблица 1 

Связь направления, поляризации упругой волны и упругой константы  
для тетрагональных кристаллов группы Лауэ ТI по Браггеру 

 

Направление  
распространения 

Направление поляризации  
и мода 

Эффективная константа 
2ρν=ijc  

100 
100 (продольная) 
001 (сдвиговая) 
010 (сдвиговая) 

С11 
С44 
С66 

001 001 (продольная) 
любое, (сдвиговая) 

С33 
С44 

110 
110 (продольная) 
110 (сдвиговая) 
001 (сдвиговая) 

½ (С11 + С12) + С66 
½ (С11 – С12) 
С44 

101 
101 (продольная) 
 
010 (сдвиговая) 

С11+С33+2С44+[(С11–С33)2 
+4 (С13+С44)2]1/2/ 4 
½ (С66 +С44) 

 
 

Таблица 2 
Экспериментальные значения фазовой скорости  

и коэффициента затухания упругих волн в SBN на частоте 500 МГц  
при Т=300 К и Е=1 кв /  см 

 

Направление 
распространения 

Тип 
волны 

Скорость 
105 м/с, 

± 1% 

Эффективная 
постоянная 

1010 н /м2, ± 2% 

Коэффициент 
затухания  

дБ/см, ± 10% 
 
100 

L 
S1 
S2 

6,56 
5,16 
3,49 

C11 = 22,6 
C66 = 13,9 
C44 = 6,40 

1,5 
1,6 
1,7 

 
101 

L 
S1 
S2 

6,86 
5,36 
3,58 

CЭФФ = 24,7 
CЭФФ = 15,0 
CЭФФ = 6,70 

1,3 
1,1 
1,5 

 
111 

L 
S1 
S2 

4,66 
3,54 
2,27 

CЭФФ = 11,4 
CЭФФ = 6,58 
CЭФФ = 2,70 

2,4 
2,0 
2,6 

001 L 5,27 C33 = 14,6 ~50 ± 20 % 
110 L 4,75 CЭФФ = 11,8 2,9 

  

L — продольная, S1 — быстрая сдвиговая, S2 — медленная сдвиговая 
 

Исследования при комнатной температуре выявили ряд интересных осо-
бенностей акустических свойств SBN. Во-первых, анизотропия фазовой скоро-
сти звука υіј (эффективных упругих податливостей сij) в SBN значительна (зна-



ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА 
 

 32

чение скорости изменяется от 2,27×105 м/с до 6,86×105 м/с), тогда как анизотро-
пия коэффициента поглощения звукаα  практически подавлена для всех на-
правлений, кроме направления [001] (табл. 2). Во-вторых, абсолютная величина 
коэффициента поглощения фононов с волновым вектором, непараллельным на-
правлению [001], весьма мала. В-третьих, обнаружено очень большое затухание 
фононов с волновым вектором, параллельным направлению [001] (порядка  
50 дБ/см на частоте 500 МГц). Наконец, измерение коэффициентов затухания 
как функции частоты сдвиговых волн в диапазоне частот 500…1700 МГц вы-
явило отклонение частотной зависимости поглощения от квадратичного закона. 
Для продольных волн получена вида α ~ ω (рис. 2), а для сдвиговых волн — 
вида α ~ ω1,5 (рис. 3). 

 

 
 

Рис. 2. Частотная зависимость коэффициента затухания  
продольных упругих волн в SBN-0,4 в различных направлениях:  

[100] — (1), [101] — (2), [111] — (3), [110] — (4).  
Прямые соответствуют зависимости вида α∼ω 

 
Как было показано в литературе [3], при ωτ<1 теория Ахиезера дает квад-

ратичную частотную зависимость решеточного поглощения     
 

                                                               α=γ2СυТω2τ / 3ρυ3 ,                                                              (4) 
 

где Сυ, — теплоемкость, γ — усредненная константа ангармонизма, ρ — плот-
ность. Здесь τ — время релаксации, близкое ко времени релаксации тепловых фо-
нонов τТ, определяющему коэффициент теплопроводности  
 
                                                  χ =1/3(Сυ υD

2 τТ ) .                                                 (5) 
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Рис. 3. Частотная зависимость коэффициента затухания быстрых (S1)  
и медленных (S2) сдвиговых упругих волн в SBN-0,4  

в направлениях [100] (1, 2), [101] (3, 4) и [111] (5, 6): 1,3,5-S1; 2,4,6,-S2.  
Прямые соответствуют зависимости вида α∼ω1,5 

 
Для определения τТ SBN-0,4 в дебаевском приближении можно восполь-

зоваться данными работы [7] по теплопроводности χ=0,6 Вт⋅м-1⋅К-1 и теплоем-
кости с=2,6 Дж⋅см-3⋅К-1 SBN-0,4 при Т=300 К. Температура Дебая ТD для кри-
сталлов двойных окислов определяется выражением 

 
                                                 ТD=120Тпл

1/2М-5/6ρ1/3 ,                                               (6) 
 

где Тпл — температура плавления, М — средний атомный вес, или зависимостью  
 
                                                  ТD=251,2М-1/3ρ1/3υD .                                                   (7) 

 
Из выражений (6) и (7) получаем  
 υD=0,48  Тпл

1/2М-1/2 ,                                                (8) 
 

откуда при Тпл = 1620 К и M=37 для SBN–0,4, получим υ~ = 3,3×103 м⋅с-1 и  
ωτТ= 10-3 при ω = 1,7 ГГц. Выполнение условия ωτТ<1 должно приводить к квад-
ратичной зависимости коэффициента затухания α  продольных и поперечных 
фононов SBN, причем, вследствие малой теплопроводности SBN, абсолютная 
величина α  в соответствии с равенством (5) должна быть весьма мала. Прини-
мая время релаксации продольных фононов τL=2τT, а время релаксации попе-
речных фононов τS=τT (что выполняется с хорошим приближением для всех 
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кристаллов [3]), выражение (4) для коэффициента затухания продольных Lα  и 
поперечных sα фононов можно записать в виде  
 

 αL =2γ2χTω2/ρυL
3υD

2 ;                                             (9) 
 

          αS =γ2χTω2/ρυS
3υD

2 .                                            (10) 
 
Полагая эффективную константу фотон-фононного взаимодействия γ  

SBN равной 2 как наиболее вероятное значение γ [3], из равенства (9) для 
Lυ =4,7…6,9×103 м·с-1 получаем αL=0,08-0,11 дБ/см, а из равенства (10) для  

sυ = 3,5…5,4×103 м/с получаем sα = 0,08…0,3 дБ/см для частоты 0,5 ГГц и тем-
пературы 300 К. Эксперимент же показывает неквадратичную зависимость за-
тухания от частоты и на порядок больше затухания фононов в SBN. 

Несоответствие эксперимента и теории можно было бы объяснять тем, что 
реальное τ  больше приведенного из оценки по теплопроводности, так как ис-
пользовалось дебаевское приближение — слишком грубое при Т = 300 К вслед-
ствие возможной дисперсии скорости тепловых фононов (средняя скорость фо-
нонов может быть много меньше дебаевской υD). Однако даже с учетом диспер-
сии скорости фτ  может не совпадать с τ , так как в теплопроводности участву-
ют как различные процессы рассеяния с сохранением импульса (нормальные 
процессы), так и процессы переброса, проходящие без сохранения импульса. За 
поглощение звука ответственны только нормальные процессы, относительный 
вклад которых в теплопроводность не поддается точной оценке. Расхождением 
между фτ = 0,5×10-11 с и Lτ = 12×10-11 с при Т = 300 К объясняется несоответст-

вие зависимости 2ω≈α L  решеточного поглощения в сульфиде кадмия CdS [3], 
где наблюдается область перехода ωτ=1 от поглощения Ахиезера к поглощению 
Ландау—Румера. 

Однако трудно предположить, что в SBN невыполнение зависимости 
2ω≈α  вызвано тем, что τ  соответствует такой области перехода. Если в CdS 

оценки ωτ из теплопроводности дают значение 1,0=ωτф  при ω = 1,5 ГГц, что, 
хотя и меньше, но близко к 1, то SBN фωτ  на два порядка меньше. Ясно, что 
если оценки фτ  из теплопроводности и не вполне правомочны, тем не менее, 

фτ  и τ  не могут отличаться на три порядка, чтобы в эксперименте наблюдалась 
область перехода 1≈ωτ . Кроме того, эксперименты по зависимости α  от тем-
пературы в интервале 20…120 ºС [7] указывают на отсутствие степенной зави-
симости α ~ Tn , которая должна иметь место при механизме Ландау—Румера. 

Расхождение между рассчитанным по (9), (10) и полученным в экспери-
менте Lα , sα  можно объяснить влиянием точечных дефектов (кислородных 
вакансий и ионов Nb4+) концентрацией N = 2,5×1018 см-3 и макроскопических 
дефектов — микровключений моноклинной фазы, имеющих место в кристаллах 
SBN с х < 0,5. Тепловые фононы рассеиваются на точечных дефектах, что вы-
зывает уменьшение времени релаксации фτ  (и уменьшение теплопроводности) 
и приводит к уменьшению α , причем на sα  влияние примеси такое же, как и 
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на теплопроводность, а на Lα  влияние примеси слабее. Если считать, что теп-
лопроводность SBN — 0,4 обусловлена большой концентрацией точечных де-
фектов, то рассчитанные по (9), (10) Lα ≈ 0,1 дБ см-1 и sα = 0,1…0,3 дБ ⋅ см-1 
можно рассматривать как результат рассеяния упругих волн на решетке кри-
сталла с точечными дефектами. 

Однако полученные в эксперименте Lα , sα , на порядок бóльшие рассчи-
танных, указывают на то, что кроме влияния точечных дефектов на α  упругих 
волн (через тепловые фононы) существует конкурирующий процесс — непо-
средственное рассеяние фононов на макродефектах, размеры которых близки к 
длине волны фононов. На это прямо указывают данные по измерению ИК по-
глощения в SBN — в области от 5 до 9 микрон имеет место сильное поглоще-
ние, что соответствует длинам упругих волн частотой 0,6…1,2 ГГц при скоро-
сти 3…6×103 м/с. Рассеяние на дефектах — микровключениях моноклинной фа-
зы должно слабо (как размер дефекта) расти с температурой и увеличивать за-
тухание фононов, что наблюдается в эксперименте.  

 
Анизотропия и дисперсия скорости и поглощения продольного звука  

в кристаллах ортованадата кальция Ca3(V04)2 
 
По типу сингонии (точечная группа Зm) и высокому значению температу-

ры Кюри Tc=1110 °С кристалл ортованадат кальция Ca3(V04)2 подобен LiNb03. 
Но, в отличие от LiNb03, кристаллы Ca3(V04)2 обладают малым двулучепрелом-
лением ∆ n=0,03 и устойчивы к воздействию лазерного излучения с интенсив-
ностью до 100 Вт/мм2 [8]. 

Исследования распространения продольных упругих волн в полидомен-
ном образце Ca3(V04)2 по осям X, У, Z и вдоль направления YZ при комнатной 
температуре показали, что Са3(V04)2 обладает высокими значениями скоростей 
и, вследствие наличия полидоменного состояния образца, — малым затуханием 
звука, особенно вдоль полярной оси.  

Результаты измерений скорости и затухания упругих волн с частотой  
500 МГц вдоль четырех указанных направлений при Т=300 К приведены в табл. 3. 
Измерения коэффициента затухания продольных волн как функции частоты в 
диапазоне частот 500–1100 МГц показали хорошее соответствие квадратичной 
зависимости α ~ ν2 для волн, распространяющихся в любом исследуемом на-
правлении (рис. 4). Дифракция на сдвиговых волнах в исследованных образцах 
не наблюдалась, возможно, не только из-за более сильного рассеяния сдви-
говых волн на доменных стенках, но и вследствие малых «сдвиговых» фотоуп-
ругих постоянных. 

 
Таблица 3 

Скорость и затухание продольных упругих волн в Са3(V04)2  при 300 К 
 

Затухание на 500 MГц Направление  
распространения 

Скорость 
(105cм /с) dB/мкс dB/см 

Z,[0001] 6,23 3,8 6,0 
Y,[1010] 5,84 6,9 12,0 
X,[1120] 5,57 7,5 13,5 
450YZ 6,01 5,7 9,5 
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Рис. 4. Частотная зависимость поглощения продольных фононов  
вдоль основных направлений в ортованадате кальция Ca3(V04)2 

 
Квадратичный характер зависимости α ~ ν2 говорит о том, что в иссле-

дуемом диапазоне частот при Т =300 К выполняется соотношение ωτТ<1. От-
сутствие данных по скорости сдвиговых волн не позволило определить υD, од-
нако оценка υD возможна из тепловых свойств Ca3(V04)2. 

Из выражения (8), используя значения Тпл=1700 К и М=26,9 для Ca3(V04)2, 
получаем υD=3,8×103 м/с. Подставив в формулу (9) значения υL= υZZ=6,23×103 м/с, 
ρ= 3,12 г/см3, χ=1,45 Вт/м⋅К и υD и приняв γ L =2,0 как наиболее вероятное γ, для 
ω=2π109 с-1 найдем αZZ=2 дБ/см. 

Расхождение между экспериментальным значением αZZ =24 дБ/см для по-
лидоменного образца и расчетным αZZ=2дБ/см для монодоменного кристалла 
можно объяснить сильным рассеянием гиперзвуковых волн на доменных стен-
ках исследованного кристалла. Подобное резкое возрастание затухания на по-
рядок наблюдалось в полидоменных образцах молибдата гадолиния Gd2(Mo04)3 
для продольных волн вдоль осей X и Y, в то время как для продольных волн по 
Z затухание в поли- и монодоменных образцах было одинаково. В исследован-
ном нами Ca3(V04)2 затухание продольных волн вдоль любого исследованного 
направления по порядку величины одинаково, что, по-видимому, связано с осо-
бенностями доменной структуры Ca3(V04)2.  

Таким образом, ясно, что рассеяние на доменных стенках вносит основной 
вклад в общее затухание в исследованном кристалле. Однако можно ожидать, 
что затухание в монодоменном Ca3(V04)2 может быть уменьшено на порядок. 
Такое заключение следует из двух общих положений, основанных на связи за-
тухания с тепловыми колебаниями решетки и подтвержденных эксперимен-
тально: 1) величина затухания обратно пропорциональна температуре Дебая и 
2) кристаллы более сложного состава имеют меньшее затухание. На рис. 5 в 
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двойном логарифмическом масштабе представлена зависимость коэффициента 
затухания Г = α/ν2 (дБ/см⋅ГГц2) от произведения ρυL

3υD
2 для хорошо известных 

кристаллов двойных окислов Рb2Мо06, РbМо04 Gd2(Mo04)3, LiNb03, LiТа03, 
Y3Fe5012, Li2Ge03 и Ca3(V04)2. Высокое значение Гв=465 К (а следовательно, и 
ρυL

3υD
2) и сложный состав кристаллов Ca3(V04)2 позволяют надеяться на 

уменьшение затухания до 2–З дБ/см на частоте 1 ГГц. 
 
 

 
 

Рис. 5. Зависимость нормированного затухания Г = α/ν2 (дБ/см-ГГц2)  
от произведения ρυL

3υD
2 для известных кристаллов.  

У кристаллов Li2Ge03 и Ca3(V04)2 затухание может быть уменьшено  
до величины, указанной звездочкой 

 
 

Упругие свойства селенида цинка, молибдата гадолиния и лангасита 
 
Кубический широкозонный полупроводник селенида цинка ZnSe, ортором-

бический при 300 К несобственный сегнетоэлектрик молибдат гадолиния 
Gd2(MoO4)2 и новый тригональный кристалл — сложный окисел лантан-галлие-
вый силикат (лангасит) La3Ga5SiO14 — являются очень интересными пьезоэлек-
трическими кристаллами. Селенид цинка обладает уникально широкой полосой 
пропускания от 0,4 до 18 микрон и, как показали наши исследования, высокими 
значениями акустооптической добротности до 65 10-18 с/г [8]. В молибдате гадо-
линия ни деформация, ни поляризация не являются параметром фазового пере-
хода, и поэтому упругие свойства GМО должны отличаться от упругих свойств 
обычных сегнетоэлектриков. Обнаружение ориентаций с нулевым температур-
ным коэффициентом частоты первого порядка вблизи 20 ºС, а следовательно,  
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с параболической зависимостью частоты от температуры с экстремумом при 
Т=20 ºС у кристаллов лангасита La3Ga5SiO14 (LGS) осенью 1983 г. [9–11] стало 
началом интенсивного проведения акустических исследований, а затем и приме-
нений в акустоэлектроннике кристалла LGS и других кристаллов, изоморфных 
лангаситу [12–14]. В табл. 4–6 приведены результаты измерений упругих свойств 
кристаллов селенида цинка ZnSe, молибдата гадолиния Gd2(MoO4)2 и лангасита 
La3Ga5SiO14 на частоте упругих волн 500 МГц при комнатной температуре. 

 
Таблица 4 

 

Упругие постоянные, скорость и затухание продольных и поперечных  
упругих волн с частотой 500 МГц в селениде цинка 

 

Символ Мода Направ-
ление 

Поля-
ризация 

Скорость 
(105см/с) 

Сij(1010дин/cм2)      
ρ = 5,26 г/см3 

Затухание 
(дБ/см) 

V1 L [001] [001 4,06± 0,02 С11= ρ ×V12=  
=87,1 ± 0,8   9 

V2 S [001] [110] 2,74± 0,01 C44=ρ×V22= 
=ρ ×V42=39,4 ± 0,4 13 

V3 L [110] [110] 4,55± 0,02  11 
V4 S [110] [001] 2,74± 0,01  15 

V5 S [110] [110] 1,82± 0,01 C12=ρ×(V12-2V52)= 
=52,2 ± 0,8 20 

 
 

Таблица 5 
 

Эффективные упругие модули, скорость и затухание упругих волн на 500 МГц  
в молибдате гадолиния Gd2(MoO4)2 (ρ=4.55) при 300 К 

 

Символ Мода Направле-
ние 

Поляри-
зация 

Скорость 
(105см/с) 

Сэфф 
(1011дин/см2) 

Затухание 
 (дБ/мкс) 

V1 L X Х 3,37 ± 0,01 5,15 1,8 
V2 L Y Y 3,85 ± 0,01 6,75 1,7 
V3 L Z Z 4,65± 0,02 9,80 0,3 
V4 S Y Z 2,35± 0,01 2,50 1,3 
V5 S Z X 2,40± 0,01 2,60 0,5 
V6 S X Y 2,70± 0,01 3,35 0,4 

 
 

Таблица 6 
 

Скорость и затухание звука в лангасите La3Ga5SiO14 (ρ=4.75) при 300 К 
 

Символ Мода Направление Поляризация Скорость 
(105см/с) 

Затухание 
(дБ/мкс ГГц2) 

V1 L X Х 5,75 ± 0,02 0,5 
V2 S X Y 3,30 ± 0,01 1,3 
V3 S X Z 2,35 ± 0,01 0,70 
V4 L Z Z 6,75± 0,02 1,3 
V5 S Z X 3,00± 0,01 0,85 
V6 Q L Y Y, Z 5,80± 0,02 0,75 
V7 S Y X 2,75± 0,01 1,1 
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Как показали эксперименты, во всех исследованных в работе кристаллах 
связь между анизотропией затухания и анизотропией упругости кристалла от-
сутствует (табл. 2–6). 

 
Таблица 7 

Нормированное затухание (дБ/см⋅ГГц2)  
и температура Дебая ТD исследованных кристаллов 

 
Тип и направление распространения  

упругой волны Кристалл Класс симметрии 
при Т=300 K ТD, K 

L, по Х L, по Z Sf SS, 

ZnSe (43m) 390 9 — 15 20 
Gd2(MoO4)3 (mm2) 420 2 2 6 8 
Ca3(VO4)2 (3m) 465 3 2 - - 

Ba04Sr06Nb2O6 (4mm) 470 2,5 6 3 8 
Ba2NaNb5O15 (mm2) 490 1,8 — — — 
La3Ga5SiO14 (3:2) 530 0,5–0,9 2 3 4 

 
В табл. 7 представлены значения нормированного к частоте 1 ГГц погло-

щения продольных L и поперечных быстрых Sf и медленных  SS упругих волн в 
исследованных кристаллах, а также рассчитанные по выражениям (9) и (10) зна-
чения температуры Дебая. Bидно, что для одинаковых по симметрии и близких 
по структуре кристаллов существует корреляция между затуханием и темпера-
турой Дебая: с ростом температуры Дебая затухание уменьшается. Такая связь  
является нормальной для фонон-фононного механизма поглощения звука в кри-
сталлах, так как температура Дебая характеризует интенсивность тепловых ко-
лебаний в кристалле при данной температуре. С другой стороны, для кристал-
лов разной симметрии и разного состава при близкой температуре Дебая по-
глощение тем меньше, чем ниже симметрия кристалла и чем больше число ато-
мов в элементарной ячейке кристалла. Поскольку известно, что кристаллы бо-
лее низкой симметрии и более сложного состава имеют меньшее время релак-
сации тепловых фононов, то наблюдаемая в эксперименте зависимость согласу-
ется с теорией Ахиезера. 

Данные, полученные на новых кристаллах, подтверждают основные по-
ложения теории Ахиезера: более высокая температура Дебая соответствует 
меньшему поглощению звука, усложнение состава кристалла и понижение его 
симметрии приводит к уменьшению затухания упругих волн. Ярким и практи-
чески очень важным результатом является низкое решеточное затухание звука в 
кристаллах лангасита 0,5–4,0 дБ/см. 

 
Влияние легирования на акустические свойства лангасита 

 
Для всех материалов внутренние потери Q-1 при низких температурах па-

дают с уменьшением температуры вследствие уменьшения фонон-фононного 
взаимодействия [15]. На частотах, много меньших обратного времени релакса-
ции тепловых фононов τТ, существующие теории предсказывают линейное из-
менение потерь с частотой 

 



ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА 
 

 40

                                                       Q-1=g(T)fτТ   ,                                                     (11) 
 

где τТ=3K/Cv D
 2 — теплопроводность, С — теплоемкость, отнесенная к единице 

объема, vD — средняя дебаевская скорость звука, g(T) — постоянная материала, 
зависящая от температуры.  

Наблюдаемое постоянство произведения Q·f=1·1013Нz у высокодобротных 
толщинно-сдвиговых кварцевых пьезоэлектрических резонаторов подтверждает 
линейную частотную зависимость внутренних потерь Q-1. 

В работе обнаружено уменьшение величины акустических потерь Q-1 в 
легированных алюминием или титаном кристаллах лангасита [16]. Анализ гра-
фика Q-1(Т) продольных резонаторов (рис. 6) показывает, что фоновые акусти-
ческие потери слабо зависят от температуры, особенно у легированного ланга-
сита. Внутреннее трение сдвиговых резонаторов изменяется с температурой 
сильнее (рис. 7), что можно объяснить большим вкладом в общие потери потерь 
в поверхностном слое пьезоэлектрических сдвиговых резонаторов. Ранее ли-
нейный рост с температурой фона внутренних потерь наблюдался при изучении 
релаксационных пиков акустических потерь у селенитов Bi12GeO20 и Bi12SiO20 в 
аналогичном частотно-температурном интервале (f=80 KHz — 1 MHz, Т=125 – 
400 К) [17]. Двукратное увеличение внутреннего трения на частоте 25 Гц на-
блюдалось также в кристаллах Ba2NaNb5O15 в интервале 100–300 К [18]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Рис. 6. Влияние температуры на акустические потери продольной моды  
вдоль направления [1020] в образцах LGS (1), LGS+0,5%Аl (2) и LGS+0,3% Ti (3) 
 
Обнаруженное уменьшение величины акустических потерь в легирован-

ных алюминием или титаном кристаллах лангасита подобно ранее наблюдае-
мому уменьшению потерь в монокристаллах алюминия с примесью магния и 
серебра [19]. Примесь, имеющая больший атомный радиус (магний), более эф-
фективно понижала высоту максимума потерь, чем серебро — примесь с мень-
шим атомным радиусом. Известно также о влиянии примесей алюминия и ти-
тана на высоту пика зависимости О-1(Т) двуокиси циркония ZrO2 [20]. Обе при-
меси снижают как максимум пика О-1(Т), так и фоновые потери, причем дву-
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окись титана, как высказано в работе [19], сильнее (до четырех раз) снижает по-
тери. Положение пика на температурной шкале при этом не менялось. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Рис. 7. Влияние температуры на акустические потери сдвиговой моды  
вдоль направления [1010] в образцах LGS (1), LGS+0,5%Аl (2) и LGS+0,3% Ti (3) 
 
По-видимому, кристаллы лангасита не являются исключением. Кристал-

лическую решетку лангасита составляют тетраэдры (Gа,Si)O4. Введение в со-
единение La3Ga5SiO14 оксидов TiO2 и Al2O3 способствует заполнению ионами 
Аl3+ и Тi4+ соответствующих позиций в решетке, предназначенных для ионов 
Gа3+ и Si4+, при этом структура кристаллов ЛГС+Аl и ЛГС+Ti становится упо-
рядоченной и релаксационные потери уменьшаются. Об упорядоченности кри-
сталлической решетки кристаллов таких составов свидетельствуют оптические 
спектры [21]. Для границы УФ поглощения лангаситала и лангаситана, в отли-
чие от спектра нелегированных образцов, характерен классический крутой спад 
интенсивности поглощения в области λ=0,45−0,58 мм, что свойственно кри-
сталлам с упорядоченной структурой (рис.8). 

 

 
 

Рис. 8. Спектры оптического пропускания кристаллов  
LGS (1), LGS+0,5%Аl (2) и LGS+0,3%Ti (3) 
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∗     ∗     ∗ 
 
Проведенные исследования акустических свойств новых или малоизучен-

ных пьезоэлектриков позволили выявить общие закономерности для широкого 
круга кристаллов с различной симметрией и составом. Наиболее важными  яв-
ляются результаты по кристаллам лангасита — первым отечественным соеди-
нениям, превосходящим высокостабильный и высокодобротный кристалличе-
ский кварц — основу современной акустоэлектроники. В последние 20 лет по-
лучение, исследование и применение кристаллов семейства лангасита – наибо-
лее динамично развивающееся направление в акустоэлектронике. 

Чистые кристаллы лангасита — неупорядоченные кислородосодержащие 
соединения — имеют низкочастотные акустические релаксационные потери, 
обусловленные кислородными вакансиями. Источником внутренних потерь в 
лангасите являются фонон-фононное взаимодействие, рассеяние на кислород-
ных вакансиях и потери в поверхностной области кристалла, что подтверждает-
ся линейной зависимостью потерь от частоты поперечных колебаний и различ-
ным характером температурной зависимости потерь от температуры для про-
дольных и поперечных упругих колебаний. Легирование лангасита алюминием 
или титаном подавляет пик релаксационных потерь, что приводит к увеличе-
нию акустической добротности. Кристаллы, изоморфные лангаситу, имеющие 
упорядоченную структуру с меньшим содержанием галлия и кремния, могут 
обладать очень низкими акустическими потерями. 

Монокристаллы семейства лангасита обладают редким сочетанием  уди-
вительных и полезных свойств для практического использования в акустоэлек-
тронике. Такие же стабильные, как кварц, но более сильные пьезоэлектрики с 
низкой скоростью сдвиговых обьемных и поверхностных волн и редкой для 
кристаллов высокой акустической добротностью, не имеющие сегнетоэлектри-
ческих или структурных фазовых переходов вплоть до температуры плавления 
кристаллы лангасита, несомненно, будут основой акустоэлектроники ХХI века. 
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I. Andreev 
 

ANISOTROPY AND DISPERSION OF THE SPEED AND ABSORPTION  
OF WAVES IN PIEZOELECTRIC CRYSTALS 

 
Acoustic properties of piezoelectric crystals with different symmetry, struc-

ture and coefficient of electromechanical coupling are investigated in a range fre-
quency of 500–1700 MHz. The dependence among Debay temperature, complexity 
of structure, rank of symmetry and magnitude of sound absorption is established. 
The reduction of sound absorption in Al-or Ti-doped langasite crystals has been dis-
covered. There results are caused by the of reduction of thermal phonons relaxation 
time according to Ahiezer theory.  

 
 

Р. А. Кастро  
 

ИССЛЕДОВАНИЕ СОСТОЯНИЯ ПРИМЕСНЫХ АТОМОВ  
ЖЕЛЕЗА И ОЛОВА В СТЕКЛООБРАЗНЫХ Ge28.5Pb15S56.5 И Ge27Pb17Se56 

 
Показано, что примесные атомы олова занимают положения заме-

щения (свинца и германия) в структурной сетке стекол Ge28.5Pb15S56.5 и 
Ge27Pb17Se56 и являются электрически неактивными, тогда как примесные 
атомы железа образуют в запрещенной зоне стекол донорные уровни. 

 
Отсутствие примесной проводимости в халькогенидных стеклообразных 

полупроводниках, легированных из расплава, объясняется перестроением в 
стеклах локального окружения примесных атомов и насыщением всех химиче-
ских связей (примесные атомы в стеклах проявляют максимальные валентно-
сти) [1]. Однако методом высокочастотного сораспыления стекла и примес- 


