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A. Belyaev 

 
EXCITATION CROSS SECTIONS AND LANDAU—ZENER MODEL 

 
The accurate quantum dynamical calculations of the inelastic cross sections 

in H + Li, Na collisions for energies from the thresholds and till 100 eV or 600 eV 
are performed. The results are compared with Landau—Zener model cross sections 
in both the diabatic and the adiabatic representations. The numerical integration of 
the coupled channel equations is checked by independent calculations indicating 
that the quantum calculations are accurate. The analytic formula for nonadiabatic 
transition probability is derived by means of the perturbation theory. Both the Lan-
dau—Zener-like and the non-Landau—Zener-like behaviour of the excitation cross 
sections are found. The non-Landau—Zener-like behaviour is explained by grazing 
incidence. It is shown that for inelastic H + Li collisions the adiabatic representa-
tion of the Landau—Zener model gives better results than the diabatic representa-
tion, but for H + Na collisions the diabatic representation works better.  

 
 

С. В. Борисёнок 
 

КОРРЕЛЯЦИОННЫЕ ФУНКЦИИ В УПРАВЛЯЕМЫХ 
СИСТЕМАХ НЕЛИНЕЙНОЙ ДИНАМИКИ 

 
Обсуждается формализм временных корреляционных функций для ис-

следования корреляционных свойств динамических систем, управляемых ме-
тодом скоростного градиента. Для практических целей физического модели-
рования представлены схемы управления для отдельной частицы и для ан-
самбля частиц. Автокорреляционные свойства управляющего сигнала суще-
ственно отличаются от таковых в моделях без управления как в случае от-
дельной частицы, так и для статистической модели.  

 
1. Управление в физических системах 

 
На границе математических и кибернетических методов теории управле-

ния, с одной стороны, и теоретической физики, с другой, в настоящее время 
разрабатывается плодотворный синтез (в особенности — в теории квантовых 
систем), который может изменить наше отношение к исследованию математи-
ческих моделей теоретической физики [1]. Происходит явный сдвиг от описа-
тельного подхода к управляющему, в рамках которого осуществляется качест-
венное преобразование изучаемой физической системы. Ее свойства предпола-
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гаются контролируемыми, а результат наблюдения, таким образом, — завися-
щим от выбранной наблюдателем конкретной схемы управления. Пользуясь 
терминологией [2], можно сказать, что происходит смена парадигмы моделиро-
вания и на место описательного (descriptive) подхода приходит предписатель-
ный (prescriptive). Управляемые физические системы получают все большее 
распространение в современных технологиях [3–4]. 

По особенностям использования математического аппарата в теории управ-
ления можно условно выделить два подхода. Одна школа, связанная географиче-
ски с Западной Европой и США, ориентируется на изучение свойств управляе-
мых систем с помощью интегральных преобразований (в первую очередь, преоб-
разований Лапласа) и, таким образом, использует преимущественно частотные 
характеристики [5–7]. Другая школа, советская и восточноевропейская, основы-
вается преимущественно на анализе временного поведения дифференциальных 
уравнений. Выводы советской школы теории управления тесно связаны с теори-
ей катастроф в нелинейных динамических моделях. Классификация различных 
схем управления для обратных связей и т. п. более детально разработана именно 
в отечественном подходе (см., например, работу [1]). 

Наряду с традиционными схемами управления также вводятся принципи-
ально новые. Изначально теория управления в физических системах предпола-
гала введение единого для всей системы управляющего поля, воздействующего 
на отдельную частицу [1, 5]. Такая схема хорошо работает в приложениях клас-
сической механики и электродинамики, но мало пригодна в задачах с ансамбле-
вым описанием частиц, классических и квантовых. Поэтому традиционная схе-
ма должна быть модифицирована для осуществления статистического управле-
ния, один из вариантов которого предложен в работах [8–9].   

Отметим неоднозначность термина «статистическое управление» в физи-
ческих системах. В целом мы можем предположить, по меньшей мере, два раз-
личных понимания этого термина.  

Во-первых, статистической может являться управляемая система. В таком 
подходе управляемая система является ансамблем классических или квантовых 
частиц, а целевая функция задается зависящей от функции распределения час-
тиц в ансамбле. Такой подход введен в работе [9], там же продемонстрирована 
его принципиальная эффективность, в частности, в задачах фокусировки квази-
классических частиц. 

Во-вторых, статистической может быть управляющая система. Такой ва-
риант подробно еще не исследован. В качестве возможного подхода укажем на 
управление не с помощью единого наложенного на физическую систему внеш-
него управляющего поля (как до сих пор это делалось в любом физическом 
приложении теории управления), а на наличие ансамбля управляющих агентов, 
осуществляющих функции контроля на микроуровне.  

Разумеется, вторая схема статистического контроля может быть осущест-
влена только вкупе с первой, т. е. речь идет уже о двух ансамблях — управ-
ляющем и управляемом. В данной статье описываются статистические управ-
ляемые системы первого типа. Управляющее поле полагается макроскопиче-
ским и единым для всех частиц управляемого ансамбля.  

В статье мы обсудим формализм временных корреляционных функций 
для исследования корреляционных свойств динамических систем, управляемых 
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методом скоростного градиента. Для практических целей физического модели-
рования — таких, в частности, как управление механическими объектами, на-
нолитография охлажденных атомов в поле стоячей световой волны1 и проч., мы 
представим схемы управления как для отдельной частицы, так и для ансамбля 
частиц (последнее необходимо для включения в круг обсуждения ряда моделей 
статистической механики). Мы не будем затрагивать проблемы, связанные с 
численным моделированием поведения нелинейных динамических систем, и 
сосредоточимся на некоторых простых, но весьма существенных для понима-
ния особенностей управляемых систем аспектах.  

Опишем основные схемы управления подробнее и начнем с нестатистиче-
ской (механической) схемы управления для отдельной частицы во внешнем по-
ле методом скоростного градиента.  

В стандартной модели нелинейная динамическая система представляется 
в форме [1]: 

 
x F(x,u,t)= ,                                                      (1.1) 

 
со скалярным временем t, вектором состояний nx R∈  и векторным управляю-
щим сигналом («входом») mu R∈ . Здесь F — непрерывная гладкая векторная 
функция.  

Под целью (целевой функцией) управления понимается гладкая скалярная 
функция Q с наложенным предельным условием: 

 
lim ( ( ), ) 0
t

Q x t t
→∞

→ .                                              (1.2) 

 
В выражении (1.2) целевая функция ( ( ), )Q x t t  не зависит от сигнала )(tu . 

Для осуществления эффективного механизма контроля ее нужно выразить че-
рез управляющий сигнал. Для этого рассмотрим скорость изменения ( ( ), )Q x t t  

вдоль траекторий (1.1), т. е. производную ω(x,u,t) Q≡ , тогда: 
 

[ ]( , )
( ( , ) T

x
Q x t

x,u,t) Q x t x
t

ω
∂

= + ∇
∂

, 

 
где T — оператор транспонирования. Подставим x  из равенства (1.1): 
 

[ ]( , )
( , ) ( , , )T

x
Q x t

(x,u,t) Q x t F x u t
t

ω
∂

= + ∇
∂

 .                       (1.3) 

 

                                                 
1 При этом качестве базовых используются модели управляемых нелинейных параметриче-

ских колебательных систем с обратной связью, математически близкие к моделям, описываю-
щим поведение холодных атомов в световом поле [3]. 
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В методе скоростного градиента управляющий сигнал выбирается так, 
чтобы достигнуть направления наиболее быстрого убывания скалярной целевой 
функции. Вход выражается через некоторую векторную функцию ψ: 

 
( )ψ ( , , )uu x u tω= − ∇ .                                          (1.4) 

 
Этот вектор ψ(z) формирует острый угол с вектором z, т. е. ψ( ) 0Tz z > , 

если 0z ≠ . 
Простейшая схема управления предполагает пропорциональную обратную 

связь (proportional feedback): ψ( )z zκ≡ ⋅ , 0κ > ; или зависящую только от знака 
z: ψ( ) sign( )z zκ≡ ⋅ , 0κ > . 

В случае, когда для динамической управляемой системы можно задать га-
мильтониан H, цель управления часто задается как достижение некоторого же-
лаемого уровня энергии H∗, тогда  

 
( )2

*Q H H= − .                                              (1.5) 
 

Такая формулировка теории управления особенно удобна для приложения 
к физическим моделям. В настоящей статье обсуждается случай не зависящей 
от времени целевой функции: ( )Q Q t≠ . Для пропорциональной обратной связи 
получаем тогда  

 
[ ]( )( ) ( , , )T

u xu Q x F x u tκ= − ∇ ∇ .                         (1.6) 
 

Используя тождество ( )/ 2T
uu u u≡ ∇ , уравнение можно записать так: 

 

[ ]1
( ) ( , , ) 0.

2
TT

u xu u Q x F x u tκ∇ + ∇ =⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Если ввести векторную функцию 0 0( , ) ( , , ) uF x t F x u t =≡  для системы без управ-
ления, уравнение управления принимает форму 

 

[ ] ( )0
1

( ) ( , , ) ( , ) 0
2

TT
xu u Q x F x u t F x tκ+ ∇ − = .                  (1.7) 

 
Введем оператор градиента: 
 

1

n

x l
l l

e
x=

∂
∇ ≡

∂
∑  

с ортами еl в пространстве состояний, тогда уравнение (1.7) записывается в виде 
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[ ],0
1

1
( , , ) ( , ) 0

2

n
T

l l
l l

Q
u u F x u t F x t

x
κ

=

∂
+ ⋅ − =

∂
∑ .                     (1.8) 

 
Это уравнение доставляет управляющий сигнал u. 

На основе второго закона Ньютона можно переписать динамическое урав-
нение как ОДУ второго порядка: 

 
( , , , )q f q q u t= ,                                                (1.9) 

 
где q — пространственная координата и, соответственно, f  — нормированная 
на массу сила, а q  — ускорение. Это соответствует случаю двумерного вектора 
состояний: 1 2( , ) ( , )T Tx x x q q≡ = . Тогда 
 

1 2( , ) ( , ( , , , ) )T Tx x x q f q q u t≡ = , 
 

и 
 

2
1 2

1 2

( , , , )
( , , , )

x
F x x u t

f x x u t
≡
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
Если мы введем функцию 0 0( , ) ( , , ) uf x t f x u t =≡  (сила в системе в отсутст-

вие управления), то 
 

1 2 0 1 2
1 2 0 1 2

0
( , , , ) ( , , )

( , , , ) ( , , )
F x x u t F x x t

f x x u t f x x t
− =

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

 
и, соответственно, 
 

[ ]1 2 0 1 2
2

1 ( )
( , , , ) ( , , ) 0

2
T Q x

u u f x x u t f x x t
x

κ
∂

+ − =
∂

.                (1.10) 

 
Это уравнение доставляет общую форму управляющего сигнала в методе 

скоростного градиента для динамического уравнения (1.9).  
 

2. Общие принципы статистического управления  
ансамблями частиц 

 
Теперь рассмотрим статистический подход на примере классического ан-

самбля N невзаимодействующих друг с другом частиц [8]. Определим понятие 
функции плотности ρ  с условием: dxdP ρ= , где dP  — вероятность обнару-
жить частицу в малом объеме dx  пространства состояний Rn-space. Разумеется, 
на функцию плотности наложена нормировка: 
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( ) 1x dxρ =∫                                                   (2.1) 
 

(с интегрированием по всей области определения x), т. е. вероятность обнаружить 
частицу ансамбля в любом из допустимых состояний равна 1. Функция плотно-
сти )(xρ  представляет все N частиц ансамбля. Частицы совершенно эквивалент-
ны и различаются только наложенными на них начальными условиями. Среднее 
некоторой величины A(x) определяется в этом случае соотношением 
 

( ) ( )
( ) ( ) ( )

( )

A x x dx
A x A x x dx

x dx

ρ
ρ

ρ
≡ =∫ ∫∫

                           (2.2) 

 
вследствие соотношения (2.1).  

Для дискретной системы N частиц можно ввести 
 

( )( )
{ }

1

1
( , ) ( ) ( )

N

nx t x t x t
N

α

α
ρ δ

=
= −∑  ,                               (2.3) 

 
α  = 1,…, N и ( ) ( ) ( ) ( )

1 2( , ,..., )T
nx x x xα α α α≡ , последний является вектором состояний 

для α -й частицы. Дираковская n-мерная дельта-функция { }( )n xδ  определяется 

через произведение одномерных дельта-функций ( )xβδ : 
 

{ }
1

( ) ( )
n

n x xβ
β

δ δ
=

≡∏ .                                              (2.4) 

 
На каждую частицу с соответствующим значением ( ) ( )x tα  наложено динамиче-
ское уравнение (1.1) с определенной функцией F. Через 0ρ  мы обозначаем на-
чальную функцию распределения, а через *ρ  — желаемую. Целевая функция 

при таком управлении может быть выбрана в виде ( )2
*Q ρ ρ≡ − . 

Заменим в нашей формулировке дискретную функцию (2.3) гладкой диф-
ференцируемой моделью ( )xρ . Для одномерных дельта-функций Дирака будем 
использовать модель 

 
2 2

1
1

( ) exp{-z /ε }zδ
ε π

≡ , где 1Rz∈ , ε 0>  и ε 0→ .                     (2.5) 

 
Разумеется, нормировка в такой модели сохраняется: 
 

1 2( ) ( ) ( ) 1z dz z dz z dzδ δ δ
+∞ +∞ +∞

−∞ −∞ −∞

= = =∫ ∫ ∫ . 
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Тогда 
 

( )( )
1or 2 β β

1 β 1

1
( )

nN
x x x

N
α

α
ρ δ

= =

= −∑∏  .                                   (2.6) 

 
Выпишем замкнутую систему уравнений для статистического ансамбля. 

Управляющий сигнал u одинаков для каждой частицы ансамбля, следовательно, 
он должен быть α -независим. Для этого приложим соотношение (1.8) к 1α -й 
частице и затем возьмем «среднее» по ансамблю, т. е. >< ... . В простейшем ва-
рианте угловые скобки означают, что мы должны заменить ( )x α  в конечном вы-
ражении средним x x dxρ= ∫ . Таким образом, управляющее уравнение будет 

справедливым для любого индекса 1α . В итоге получается замкнутая система 
трех уравнений (с определенной выше желаемой функцией распределения *ρ ): 

 

( )1 1

1

( ) ( )
,0( )

1

1
( , , ) ( , ) 0

2

n
T

l l
l l

Q
u u F x u t F x t

x
α α

ακ
=

∂
+ ⋅ − =

∂
∑             (2.7) 

 
— (управляющее уравнение;   
 

2
*(ρ ρ )Q ≡ −     — определение целевой функции;        (2.8) 

 

( )( )
1,2 β β

1 β=1

1
ρ( ) δ

N n

x x x
N

α

α=
= −∑∏   — определение функции плотности.      (2.9) 

 
Для гладкой модели (2.5) дельта-функции итоговое уравнение принимает 

вид [9]: 
 

( ) ( ) ( )[ ] ( )( ) ( ) ( ) ( )
* * * ,* ,02

1

1 4
ρ ρ ρ ρ ρ ρ 0

2 ε

n
T

l l l l l
l

u u x x x F Fα α α ακ

=

+ − − − ⋅ − ⋅ ⋅ − =∑ ,     (2.10) 

 
где использовано обозначение: ( ) ( )( , , )F F x u tα α≡ .  

В целом компьютерное моделирование статистического контроля является 
более сложным, чем в стандартной нестатистической схеме. Для каждого вре-
менного шага dt нужно вычислять соответствующую функцию плотности ρ , а на 
ее основе — находить средние и переопределять управляющий сигнал u.  

Один из стандартных примеров приложения теории управления — пло-
ский модулированный осциллятор Капицы, представляющий собой математи-
ческий маятник с вибрирующей горизонтально и/или вертикально точкой под-
веса [10]. При определенных условиях модуляции порождаются дополнитель-
ные положения равновесия.  
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Приложим нашу схему статистического управления к осциллятору Капи-
цы. Введем динамическую систему с 1Ru∈  и ( , )Tx q v≡ , где qv ≡ . Сила из вы-
ражения (1.10) линейна по u: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0( , ) ( , )f f q v u g q v f u gα α α α α α α= − ⋅ ≡ − ⋅ ,              (2.11) 
 

а для квазиклассической системы из работы [3]: 
 

2( , ) sing q v v qβ ω= + ;  β ,ω const=  .                           (2.12) 
 

Определим для простоты желаемые значения: ( )
* 0q α =  и ( )

* 0v α =  для лю-
бого индекса α . Тогда общая форма управляющего уравнения (2.10) может 
быть представлена как: 

 
( ) ( )

* *2

8
( , ) (ρ ρ ) (ρ ρ ) ρ

ε
u q v g v vα ακ

= − − −⎡ ⎤⎣ ⎦ ,                    (2.13) 
 

где 
 

{ }1 1

1

( ) ( )2 2
2 2

1

1 1
ρ exp ( ) ( )

π ε ε

N
q q v v

N
α α

α =
= − − + −⎡ ⎤⎣ ⎦∑ ;               (2.14) 

 

{ } { }
2

2 2 2 2
* 2 2 2 2

1

1 1 1 1
ρ exp exp

π ε ε π ε ε

N
q v q v

N α =
= − + = − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑ .     (2.14а) 

 
Наконец: 
 

( )2 2
*2

*

8 ρ
( , ) (ρ ρ ) β ω sin

ε ρ ρ
u q v v q v v

κ
= − + −

−

⎡ ⎤
⎢ ⎥⎣ ⎦

.            (2.15) 

 
Такая форма управляющего сигнала сильно отличается от вычисленной в 

работе [3], поскольку она зависит не от пространственной координаты отдель-
ной частицы, но содержит информацию о функции распределения частиц в ан-
самбле. 

 
3. Временные корреляционные функции  
для управляемых динамических систем 

 

Автокорреляционная функция часто используется при исследовании 
сложных режимов движения и весьма эффективно характеризует эволюцию не-
линейной динамической системы [11]. Так, периодическому или квазипериоди-
ческому поведению отвечает периодическая или квазипериодическая автокор-
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реляционная функция соответственно. Хаотическому режиму сопоставляется 
автокорреляционная функция, стремящаяся к нулю по мере возрастания време-
ни.  

Пусть 1( ) { ( ), ..., ( )}i nx t x t x t=  — одно из решений динамического уравне-

ния (1.1). Рассмотрим только одну компоненту решения ( ) ( )mx t x t≡ . Автокор-
реляционной функцией называется среднее по некоторому временному интер-
валу T (при ∞→T ): 

 

0

1
( ) lim ( ) ( )

T

xx T
C t x x t d

T
τ τ τ

→∞
= +∫ .                              (3.1) 

 
Аналогично можно определить временную корреляционую функцию двух 

величин: )(tx  и )(ty : 
 

0

1
( ) lim ( ) ( )

T

xy T
C t x y t d

T
τ τ τ

→∞
= +∫ .                             (3.2) 

 
Другой характеристикой системы является спектральная плотность (или 

просто спектр), тесно связанная с автокорреляционной функцией. Скажем, пе-
риодическая динамика системы с периодом 1T  (когда точка на фазовой плоско-
сти движется по предельному циклу) порождает дискретный спектр — узкие 
линии на частоте движения 1 1ω 2π / T=  и на кратных гармониках 12ω , 13ω  и т. д. 

Квазипериодическому движению с несоизмеримыми частотами 1ω , ..., ωm  отве-
чает спектр из m линий, соответствующих этим частотам и кратным им гармо-
никам. У хаотического режима спектр будет сплошным.  

Спектральная плотность определяется формулой 
 

21
( ) lim ( )

2πT
S X

T
ω ω

→∞
= ,                                             (3.3) 

 
где (ω)X  — коэффициенты Фурье для функции )(tx : 
 

0

(ω) ( ) e
T

i tX x t dtω− ⋅= ∫ .                                          (3.4) 

 
Можно показать [11], что  
 

0

1
(ω) cos(ω τ) (τ) τ

π

T

xxS C d= ⋅∫  .                                (3.5) 
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Например, для периодической функции с периодом 1T  имеем 

1( ) ( )x t x t T= + . Разложим ее в ряд Фурье: 
 

1( ) e in t
n

n
x t c ω

+∞
−

=−∞
= ∑ , 

 
где nc  — коэффициенты Фурье, 1 1ω 2π / T= . Тогда автокорреляционная функ-
ция равна: 
 

1 12( ) e e ,in t in t
xx n n n

n n
C t c c cω ω

+∞ +∞
− −

−
=−∞ =−∞

= =∑ ∑  

 
при вычислении ( )xxC t  использовано свойство *

n nc c−=  (так как функция ( )x t  
— вещественная). Следовательно, автокорреляционная функция тоже имеет пе-
риод 1T . Ей соответствует спектральная плотность 
 

12 2( )
1

0

1
(ω) e τ δ(ω ω )

π
i n

n n
n n

S c d c nω ω τ
∞+∞ +∞

− −

=−∞ =−∞
= = −∑ ∑∫ , 

 
представляющая собой дискретный спектр с основной частотой движения 1ω  и 

гармониками 1ωn ; n = 1, 2, … . 
В данной статье мы не обсуждаем численные методы анализа поведения 

динамических систем на основе исследования спектров как таковых, поскольку 
это требует отдельного, весьма подробного обсуждения.  

Несмотря на то, что исследование характера спектров позволяет характе-
ризовать степень хаотичности поведения нелинейной системы, в теории управ-
ления подробно недостаточно обсуждался вопрос о качественном характере из-
менения спектра системы при наложении на нее управления. Насколько суще-
ственно спектр системы перестраивается при наличии управления и отражается 
ли существенным образом конкретная схема управления в устройстве спектра 
системы — в общем случае эти вопросы остаются открытыми.  

Обратимся снова к «сквозному» примеру статьи — модели маятника Ка-
пицы. Остановимся для простоты только на вертикальных модуляциях. Дина-
мическое уравнение имеет вид 

 
2 ρ sin sinml mgl mluϕ ϕ ϕ ϕ⋅ + ⋅ + =  ,                            (3.6) 

 
где ( )tϕ ϕ=  — угол отклонения от вертикали (значение 0=ϕ  соответствует 
нижнему положению равновесия), а )(tuu =  является вертикальным ускорени-
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ем точки подвеса, 0≥ρ  — коэффициент трения. Нижнее положение равновесия 
ϕ = 0 устойчиво всегда. Однако гармоническое ускорение (быстрая вибрация) 

2( ) ω sinωu t A t=  приводит к тому, что перевернутое положение равновесия 
πϕ =  также становится стабильным при выполнении условия 

 
2 2ω

1
2

A

gl
> .                                                            (3.7) 

 
Такая схема называется вибрационным управлением [12].  

При этом автокоррелятор управляющего сигнала есть 
 

2 4

0

1 1
( ) lim (τ) (τ ) τ ω cosω

2

T

uu T
C t u u t d A t

T→∞
= + =∫ .                   (3.8) 

 
Принципиально другим поведением эта функция отличается в случае ан-

самбля частиц. Обратимся к теории управления в форме метода скоростного 
градиента. Определим целевую функцию2 как 

 

*lim ( )
t

H t H
→∞

=  ,                                                (3.9) 

 
где 
 

2
2( ) ( ) (1 cos )

2

ml
H t mglϕ ϕ= + ⋅ −                              (3.10) 

 
— энергия осциллятора. Тогда метод скоростного градиента позволяет полу-
чить сигнал: 
 

*( ) ( ) sinu t H Hγ ϕ ϕ= − − ⋅                                       (3.11) 
 

или 
 

*( ) sign[( ) sin ]u t H Hγ ϕ ϕ= − ⋅ − ⋅  .                     (3.11а) 
 

Стабилизация в перевернутом положении соответствует желаемому значению  
 

* 2H mgl=  .                                                 (3.12) 

                                                 
2 Для управляемой гамильтоновой системы с малой диссипацией ρ уровень энергии, дости-

жимый при помощи управления уровня γ, имеет порядок (γ/ρ)2. Этот важный результат теории 
управления [1] налагает ограничения на численные значения γ и ρ. В данной статье мы полага-
ем это условие выполненным.  
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Пространство состояний управляемого маятника Капицы двумерно: 

1x ϕ=  и 2x ϕ= . Мы должны решить задачу Коши системы ОДУ первого по-
рядка: 

 

1 2

2 2 1

;

( )
sin .

x x

g u
x x x

l
β

=

−
= − ⋅ −

⎧⎪
⎨
⎪⎩

 

 

Здесь использовано обозначение: 2β ρ / ml= .  
Обратная связь реализуется в виде сигнала 
 

1 2 * 2 1( , ) ( ) sinx x H H x xu γ= − −  
 

с энергией: 
 

2
2 11 cos

2

l
H mgl x x

g
= + −

⎡ ⎤
⎢ ⎥⎣ ⎦

 . 

 
Исследуем поведение автокоррелятора: 
 

( )( )

0
2

* *
0

1
( ) lim (τ) (τ ) τ

lim (τ) (τ ) (τ) sin (τ) (τ ) sin (τ ) τ .

T

uu T

T

T

C t u u t d
T

H H H t H t t d
T

γ
ϕ ϕ ϕ ϕ

→∞

→∞

= + =

= − + − + +

∫

∫
 

 
Так как целевая функция (3.9) выводит гамильтониан на желаемый уро-

вень (3.12), то 0uuC →  при t → ∞ . Аналогичный вывод можно сделать для 

1
0uxC →  при t → ∞ , поскольку значения 1x ϕ=  у маятника Капицы финитны. 

 
 

4. Аппарат временных корреляционных функций  
в статистических управляемых ансамблях 

 
Можно приложить аппарат корреляционных функций и к статистическим 

управляемым моделям. Обозначим через x(t) полный набор координат про-
странства состояний, и пусть ));(( ttxA  будет некоторой функцией от них. Ис-
пользуя (1.1), мы для краткости обозначим ее через )(tA . Определим времен-
ную корреляционную функцию от )(tA  как  

 
( ) (0) ( ) ( ;0) ( ; ) ( )AAC t A A t dx A x A x t xρ= = ∫  ,                         (4.1) 
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где ρ  — функция плотности для данного ансамбля. Аналогично вводится вре-
менная корреляционная функция ABC  от двух функций в пространстве состоя-
ний, ));(( ttxA  и ));(( ttxB , т. е. )()0( tBA . Дополнительно можно ввести обоб-
щенный спектр (susceptibility) ψ(ω)  в виде [13]: 
 

0

( ) e (0) ( )i tdt A B tωψ ω
∞

− ⋅= ∫  .                                  (4.2) 

 
Предел нулевой частоты этого выражения называется в статистической механи-
ке коэффициентом переноса (transport coefficient). Когда A = B, корреляционная 
функция часто называется автокорреляционной.  

Поскольку функция распределения была выбрана в форме дельта-функции 
(2.6), интеграл (4.1) может быть взят и представлен в форме 

 
( ) ( )

1

1
( ) ( (0);0) ( ( ); ))

N

AAC t A x A x t t
N

α α

α=
= ∑ ;                        (4.3) 

 
( ) ( )

1

1
( ) ( (0);0) ( ( ); ))

N

ABC t A x B x t t
N

α α

α=
= ∑ .                      (4.3а) 

 
Применим теперь аппарат корреляционных функций к управляемому сиг-

налом (2.15) маятнику Капицы. Из выражения (4.3) следует:   
 

( )

( )

2

2
2 2 ( )

* 0 0 0
1 *

2 2 ( )
*

*

1 8 (0)
( ) ( (0) ) sin (0)

(0)

( )
( ( ) ) ( ) sin ( ) ( ) ( ) .

( )

N

uuC t v q v v
N

t
t v t q t v t v t

t

α

α

α

κ ρ
ρ ρ β ω

ε ρ ρ

ρ
ρ ρ β ω

ρ ρ

=
= − + − ×

−

× − + −
−

⎡ ⎤⎛ ⎞
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

∑
 (4.4) 

 
Даже без существенных вычислений можно сделать ряд определенных 

выводов. Прежде всего, из выражений (4.4) и (2.8) следует, что ( )uuC t  пропор-
циональна функции цели ( )Q t . С помощью функции (1.2) можно заключить, что 

 
lim ( ) 0uut

C t
→∞

→  .                                                (4.5) 

 
Другими словами, автокорреляционная функция управляющего поля име-

ет нулевой предел в бесконечном пределе времени (она стремится к нулю на-
столько быстро, насколько целевая функция стремится к желаемой), т. е. управ-
ляющий сигнал не имеет памяти, если управление осуществляется достаточно 
долгое время.  
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Потребуем теперь 00 =v  и используем нормировку 2 28 ω sin / ε 1qκ = . Для 
грубой оценки положим 0)( ≅tv . Тогда (4.4) может быть переписано: 

 
2 2 ( ) ( )

* *
1 0

1 sin ( )
( ) (ρ(0) ρ ) (ρ( ) ρ ) (0) ( )

sin

N

uu
q t

C t t v v t
N q

α α

α=
= − −∑  .          (4.6) 

 
Обратимся теперь к обсуждению корреляций между управляющим сигналом u 
и функцией плотности: 
 

( ) ρ( ; 0) ( ; )ρ( , )uC t dx x u x t x tρ = ∫  .                                 (4.7) 
 

С учетом (2.6) это эквивалентно: 
 

( ) ( )

1

1
( ) ( (0); 0) ( ( ); ))

N

uC t x u x t t
N

α α
ρ

α
ρ

=
= ∑  .                      (4.8) 

 
Наконец, подставив (2.15) в выражение (4.8), получим 

 

( )2 2 ( )
*2

1 *

8 ρ
( ) ρ(0) (ρ ρ ) ω sin .

ρ ρ

N

uC t v q v v
N

α
ρ

α

κ
β

ε =
= − + −

−

⎡ ⎤
⎢ ⎥⎣ ⎦

∑         (4.8) 

 
Это означает, аналогично случаю )(tCuu , что 

 
lim ( ) 0ut

C tρ→∞
→  ,                                                 (4.5) 

 
т. е. управляющий сигнал u не коррелирует во времени с собой и с другими 
принципиальными функциями (такими, как функция плотности) на больших 
временах управления.  

Разумеется, у автокоррелятора функции плотности )(tCρρ  такое свойство 
отсутствует. Это означает, и этот факт следует из общей идеологии теории 
управления, что распределение частиц управляемого ансамбля автокоррелиро-
вано. Управляемая система содержит свою «память» об управлении внешним 
полем в функции распределения, но не в управляющем сигнале. Контролирую-
щее поле воспроизводится на каждом шаге управления не столько из своих 
предыдущих состояний, сколько из текущего состояния функции распределе-
ния частиц. Другими словами, для каждого шага процедуры статистического 
управления значение управляющего сигнала u на предыдущем шаге не столь 
существенно.  
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∗     ∗     ∗ 
 
Подытожим наши основные результаты.  
1. В случае отдельной частицы и статистической системы введены корре-

ляционные функции управляющего сигнала u и (для ансамбля частиц) функции 
плотности.  

2. Автокорреляционные свойства управляющего сигнала существенно от-
личаются от таковых в моделях без управления — как в случае отдельной час-
тицы, так и для статистической модели. Управляющий сигнал коррелирует во 
времени с собой и с другими функциями (такими, как функция распределения) 
в пределе больших времен управления. В случае ансамбля частиц для практиче-
ской реализации управления это означает, что для вычисления управляющего 
сигнала важнее знать его текущее значение на предыдущем шаге и эволюцию 
функции распределения, нежели его собственную временную эволюцию.  
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S. Borisenok 
 

CORRELATION FUNCTIONS IN CONTROLLED SYSTEMS 
OF NON-LINEAR DYNAMICS 

 
The time-correlation function formalism is discussed to investigate the corre-

lation properties of dynamical systems controlled by the speed gradient method. For 
the practical purposes of physics modeling the control schemes for a single particle 
and for an ensemble of particles are presented. Auto-correlation properties for the 
controlling signal are completely different from the non-controlled models both for 
a single particle case and for the statistical model.  
 
 


